66 research outputs found

    The Detectability of AGN Cavities in Cooling-Flow Clusters

    Full text link
    Chandra X-ray Observatory has revealed X-ray cavities in many nearby cooling flow clusters. The cavities trace feedback from the central active galactic nulceus (AGN) on the intracluster medium (ICM), an important ingredient in stabilizing cooling flows and in the process of galaxy formation and evolution. But, the prevalence and duty cycle of such AGN outbursts is not well understood. To this end, we study how the cooling is balanced by the cavity heating for a complete sample of clusters (the Brightest 55 clusters of galaxies, hereafter B55). In the B55, we found 33 cooling flow clusters, 20 of which have detected X-ray bubbles in their ICM. Among the remaining 13, all except Ophiuchus could have significant cavity power yet remain undetected in existing images. This implies that the duty cycle of AGN outbursts with significant heating potential in cooling flow clusters is at least 60 % and could approach 100 %, but deeper data is required to constrain this further.Comment: 4 pages, 2 figures; to appear in the proceedings of "The Monsters' Fiery Breath", Madison, Wisconsin 1-5 June 2009, Eds. Sebastian Heinz & Eric Wilcots; added annotation to the figur

    Jet Interactions with the Hot Halos of Clusters and Galaxies

    Get PDF
    X-ray observations of cavities and shock fronts produced by jets streaming through hot halos have significantly advanced our understanding of the energetics and dynamics of extragalactic radio sources. Radio sources at the centers of clusters have dynamical ages between ten and several hundred million years. They liberate between 1E58-1E62 erg per outburst, which is enough energy to regulate cooling of hot halos from galaxies to the richest clusters. Jet power scales approximately with the radio synchrotron luminosity to the one half power. However, the synchrotron efficiency varies widely from nearly unity to one part in 10,000, such that relatively feeble radio source can have quasar-like mechanical power. The synchrotron ages of cluster radio sources are decoupled from their dynamical ages, which tend to be factors of several to orders of magnitude older. Magnetic fields and particles in the lobes tend to be out of equipartition. The lobes may be maintained by heavy particles (e.g., protons), low energy electrons, a hot, diffuse thermal gas, or possibly magnetic (Poynting) stresses. Sensitive X-ray images of shock fronts and cavities can be used to study the dynamics of extragalactic radio sources.Comment: 10 pages, 3 figures, invited review, "Extragalactic Jets: Theory and Observation from Radio to Gamma Ray, held in Girdwood, Alaska, U.S.A. 21-24 May, 2007, minor text changes; one added referenc

    The powerful outburst in Hercules A

    Get PDF
    The radio source Hercules A resides at the center of a cooling flow cluster of galaxies at redshift z = 0.154. A Chandra X-ray image reveals a shock front in the intracluster medium (ICM) surrounding the radio source, about 160 kpc from the active galactic nucleus (AGN) that hosts it. The shock has a Mach number of 1.65, making it the strongest of the cluster-scale shocks driven by an AGN outburst found so far. The age of the outburst ~5.9e7 y, its energy about 3e61 erg and its mean power ~1.6e46 erg/s. As for the other large AGN outbursts in cooling flow clusters, this outburst overwhelms radiative losses from the ICM of the Hercules A cluster by a factor of ~100. It adds to the case that AGN outbursts are a significant source of preheating for the ICM. Unless the mechanical efficiency of the AGN in Hercules A exceeds 10%, the central black hole must have grown by more than 1.7e8 Msun to power this one outburst.Comment: 4 pages, 5 figures, accepted by ApJ

    An Energetic AGN Outburst Powered by a Rapidly Spinning Supermassive Black Hole or an Accreting Ultramassive Black Hole

    Full text link
    Powering the 10^62 erg nuclear outburst in the MS0735.6+7421 cluster central galaxy by accretion implies that its supermassive black hole (SMBH) grew by ~6x10^8 solar masses over the past 100 Myr. We place upper limits on the amount of cold gas and star formation near the nucleus of <10^9 solar masses and <2 solar masses per year, respectively. These limits imply that an implausibly large fraction of the preexisting cold gas in the bulge must have been consumed by its SMBH at the rate of ~3-5 solar masses per year while leaving no trace of star formation. Such a high accretion rate would be difficult to maintain by stellar accretion or the Bondi mechanism, unless the black hole mass approaches 10^11 solar masses. Its feeble nuclear luminosities in the UV, I, and X-ray bands compared to its enormous mechanical power are inconsistent with rapid accretion onto a ~5x10^9 solar mass black hole. We suggest instead that the AGN outburst is powered by a rapidly-spinning black hole. A maximally-spinning, 10^9 solar mass black hole contains enough rotational energy, ~10^62 erg, to quench a cooling flow over its lifetime and to contribute significantly to the excess entropy found in the hot atmospheres of groups and clusters. Two modes of AGN feedback may be quenching star formation in elliptical galaxies centered in cooling halos at late times. An accretion mode that operates in gas-rich systems, and a spin mode operating at modest accretion rates. The spin conjecture may be avoided in MS0735 by appealing to Bondi accretion onto a central black hole whose mass greatly exceeds 10^10 solar mass. The host galaxy's unusually large, 3.8 kpc stellar core radius (light deficit) may witness the presence of an ultramassive black hole.Comment: Accepted for publication in ApJ. Modifications: adopted slightly higher black hole mass using Lauer's M_SMBH vs L_bulge relation and adjusted related quantities; considered more seriously the consequences of a ultramassive black hole, motivated by new Kormendy & Bender paper published after our submission; other modifications per referee comments by Ruszkowsk

    Constraining the Nature of X-ray Cavities in Clusters and Galaxies

    Full text link
    We present results from an extensive survey of 64 cavities in the X-ray halos of clusters, groups and normal elliptical galaxies. We show that the evolution of the size of the cavities as they rise in the X-ray atmosphere is inconsistent with the standard model of adiabatic expansion of purely hydrodynamic models. We also note that the majority of the observed bubbles should have already been shredded apart by Rayleigh-Taylor and Richtmyer-Meshkov instabilities if they were of purely hydrodynamic nature. Instead we find that the data agrees much better with a model where the cavities are magnetically dominated and inflated by a current-dominated magneto-hydrodynamic jet model, recently developed by Li et al. (2006) and Nakamura et al. (2006). We conduct complex Monte-Carlo simulations of the cavity detection process including incompleteness effects to reproduce the cavity sample's characteristics. We find that the current-dominated model agrees within 1sigma, whereas the other models can be excluded at >5sigma confidence. To bring hydrodynamic models into better agreement, cavities would have to be continuously inflated. However, these assessments are dependent on our correct understanding of the detectability of cavities in X-ray atmospheres, and will await confirmation when automated cavity detection tools become available in the future. Our results have considerable impact on the energy budget associated with active galactic nucleus feedback.Comment: 21 pages, 12 figures, emulateapj, accepted for publication in ApJ, responded to referee's comments and added a new model, conclusions unchange

    Radio Properties of Cavities in the ICM: Imprints of AGN Activity

    Get PDF
    We present new, high resolution radio images of sources associated with cD galaxies and X-ray cavity systems located in cluster cores. The cavity properties derived from archival Chandra observations give reliable estimates of the total jet power and age independently of the radio synchrotron flux. We combine the X-ray data and VLA radio images taken at multiple frequencies to investigate several fundamental properties of cluster radio sources, including their radiative (mechanical) efficiencies, magnetic field contents, and particle contents, and we evaluate the assumption of equipartition in these systems. We show that high radio frequencies probe the current AGN output, while frequencies at or below 327 MHz trace the history of AGN activity in the cores of clusters over the past several hundred million years

    Identifying dynamically young galaxy groups via wide-angle tail galaxies: A case study in the COSMOS field at z=0.53

    Get PDF
    We present an analysis of a wide-angle tail (WAT) radio galaxy located in a galaxy group in the COSMOS field at a redshift of z=0.53 (hereafter CWAT-02). We find that the host galaxy of CWAT-02 is the brightest galaxy in the group, although it does not coincide with the center of mass of the system. Estimating a) the velocity of CWAT-02, relative to the intra-cluster medium (ICM), and b) the line-of-sight peculiar velocity of CWAT-02's host galaxy, relative to the average velocity of the group, we find that both values are higher than those expected for a dominant galaxy in a relaxed system. This suggests that CWAT-02's host group is dynamically young and likely in the process of an ongoing group merger. Our results are consistent with previous findings showing that the presence of a wide-angle tail galaxy in a galaxy group or cluster can be used as an indicator of dynamically young non-relaxed systems. Taking the unrelaxed state of CWAT-02's host group into account, we discuss the impact of radio-AGN heating from CWAT-02 onto its environment, in the context of the missing baryon problem in galaxy groups. Our analysis strengthens recent results suggesting that radio-AGN heating may be powerful enough to expel baryons from galaxy groups.Comment: 8 pages, 6 figures, 1 table. Accepted for publication in Ap

    The Development and Scientific Impact of the Chandra X-Ray Observatory

    Full text link
    I review the operational capabilities of the Chandra X-ray Observatory, including some of the spectacular results obtained by the general observer community. A natural theme of this talk is that Chandra is revealing outflows of great quantities of energy that were not previously observable. I highlight the Chandra studies of powerful X-ray jets. This subject is only possible due to the sub-arcsecond resolution of the X-ray telescope.Comment: 8 pages, 4 figures. Talk given at the International Workshop on Astronomy and Relativistic Astrophysics (IWARA2003), Olinda, Brasil, October 2003. To appear in the International Journal of Modern Physics

    AGN effect on cooling flow dynamics

    Full text link
    We analyzed the feedback of AGN jets on cooling flow clusters using three-dimensional AMR hydrodynamic simulations. We studied the interaction of the jet with the intracluster medium and creation of low X-ray emission cavities (Bubbles) in cluster plasma. The distribution of energy input by the jet into the system was quantified in its different forms, i.e. internal, kinetic and potential. We find that the energy associated with the bubbles, (pV + gamma pV/(gamma-1)), accounts for less than 10 percent of the jet energy.Comment: "Accepted for publication in Astrophysics & Space Science
    corecore