30 research outputs found

    Structural relaxation of nanocrystalline PdAu alloy: Probing the spectrum of potential barriers

    Get PDF
    A commonality between nanocrystalline metals and metallic glasses is their dependence of structure and properties upon preparation history and postprocessing. Depending on preparation conditions, stored excess enthalpy and volume—relative to the crystalline ground state—can vary significantly. Annealing of material states of elevated enthalpy or volume induces structural relaxation and concomitant depletion of excess energy and volume. We analyzed the kinetics of volume relaxation in nanocrystalline PdAu alloys by partitioning the overall process into a set of independent and parallel reactions for arbitrary time-temperature protocols. The obtained spectra of kinetic parameters imply a complex relaxation behavior that violates time-temperature superposition and time aging-time superposition. The analysis will enable to reconstruct the effective energy landscape underlying the relaxation dynamics

    Structural relaxation of nanocrystalline PdAu alloy: Mapping pathways through the potential energy landscape

    Get PDF
    Preparation history and processing have a crucial influence on which configurational state material systems assume. Glasses and nanocrystalline materials usually reside in nonequilibrium states at room temperature, and as a consequence, their thermodynamic, dynamical, and physical properties change with time—even years after manufacture. Such changes, entitled aging or structural relaxation, are all manifestations of paths taken in the underlying potential energy landscape. Since it is highly multidimensional, there is a need to reduce complexity. Here, we demonstrate how to construct a one-dimensional pathway across the energy landscape using strain/volume as an order parameter. On its way to equilibrium, we map the system’s release of energy by calorimetry and the spectrum of barrier heights by dilatometry. The potential energy of the system is reduced by approximately B during relaxation, whereas the crossing of saddle points requires activation energies in the order of 1eV/atom relative to the energy minima. As a consequence, the system behaves as a bad global minimum finder. We also discovered that aging is accompanied by a decrease in the non-ergodicity parameter, suggesting a decline in density fluctuations during aging

    In situ micromechanical testing inside the scanning electron microscope at subambient temperatures

    Get PDF
    In material science, the measurement of mechanical material properties as a function of temperature is of great interest, as it allows determining the activation parameters of the underlying deformation mechanism. In the case of nanostructured materials or MEMS devices, it is interesting to probe local properties by means of micromechanical experiments. However, in the case of nanograined metals, testing at elevated temperatures is not possible due to heat induced grain growth and thus changes in the microstructure during testing. We developed a device that allows performing micromechanical tests at low temperatures down to -150°C inside a scanning electron microscope. A cold finger connected to the sample and tip holders by copper braids is cooled by circulating nitrogen. Independent thermal management of the indenter and the sample allows minimizing temperature differences and thereby drift. Local cooling, thermal isolation of the cold regions, and a closed loop frame temperature control reduce frame drift, noise, and the need for a temperature-dependent calibration. A symmetric design of the cooling bodies was chosen in order to minimize bending moments on the indenter and the sample, which increases the accuracy of the measurements. The high vacuum environment minimizes condensation of water vapor and hydrocarbons on the indenter and sample. Positioning as well as in situ observation is made possible by the use inside a scanning electron microscope. For validation of the system, indentations in Cu were performed down to -150°C. Please click Additional Files below to see the full abstract

    Revealing Grain Boundary Sliding from Textures of a Deformed Nanocrystalline Pd–Au Alloy

    Get PDF
    Employing a recent modeling scheme for grain boundary sliding [Zhao et al. Adv. Eng. Mater. 2017, doi:10.1002/adem.201700212], crystallographic textures were simulated for nanocrystalline fcc metals deformed in shear compression. It is shown that, as grain boundary sliding increases, the texture strength decreases while the signature of the texture type remains the same. Grain boundary sliding affects the texture components differently with respect to intensity and angular position. A comparison of a simulation and an experiment on a Pd–10 atom % Au alloy with a 15 nm grain size reveals that, at room temperature, the predominant deformation mode is grain boundary sliding contributing to strain by about 60%

    Microstructural-defect-induced Dzyaloshinskii-Moriya interaction

    Get PDF
    The antisymmetric Dzyaloshinskii?Moriya interaction (DMI) plays a decisive role for the stabilization and control of chirality of skyrmion textures in various magnetic systems exhibiting a noncentrosymmetric crystal structure. A less studied aspect of the DMI is that this interaction is believed to be operative in the vicinity of lattice imperfections in crystalline magnetic materials, due to the local structural inversion symmetry breaking. If this scenario leads to an effect of sizable magnitude, it implies that the DMI introduces chirality into a very large class of magnetic materials?defect-rich systems such as polycrystalline magnets. Here, we show experimentally that the microstructural-defect-induced DMI gives rise to a polarization-dependent asymmetric term in the small-angle neutron scattering (SANS) cross section of polycrystalline ferromagnets with a centrosymmetric crystal structure. The results are supported by theoretical predictions using the continuum theory of micromagnetics. This effect, conjectured already by Arrott in 1963, is demonstrated for nanocrystalline terbium and holmium (with a large grain-boundary density), and for mechanically deformed microcrystalline cobalt (with a large dislocation density). Analysis of the scattering asymmetry allows one to determine the defect-induced DMI constant, D=0.45±0.07mJ/m2 for Tb at 100K. Our study proves the generic relevance of the DMI for the magnetic microstructure of defect-rich ferromagnets with vanishing intrinsic DMI. Polarized SANS is decisive for disclosing the signature of the defect-induced DMI, which is related to the unique dependence of the polarized SANS cross section on the chiral interactions. The findings open up the way to study defect-induced skyrmionic magnetization textures in disordered materials
    corecore