2,684 research outputs found

    Pion and Kaon Spectra from Distributed Mass Quark Matter

    Full text link
    After discussing some hints for possible masses of quasiparticles in quark matter on the basis of lattice equation of state, we present pion and kaon transverse spectra obtained by recombining quarks with distributed mass and thermal cut power-law momenta as well as fragmenting by NLO pQCD with intrinsic kTk_T {and nuclear} broadening.Comment: Talk given at SQM 200

    Cooper-Frye Formula and Non-extensive Coalescence at RHIC Energy

    Get PDF
    Transverse spectra are calculated for various types of hadrons stemming from Au Au collisions at s=200\sqrt{s}=200 GeV. We utilize a quark recombination model based on generalized Boltzmann-Gibbs thermodynamics for local hadron production at various break-up scenarios.Comment: 4 pages, 1 figur

    Microcanonical Jet-fragmentation in proton-proton collisions at LHC Energy

    Get PDF
    In this paper, we show that the distribution of the longitudinal momentum fraction of charged hadrons dN/dzdN/dz inside jets stemming from proton-proton collisions at s\sqrt{s} = 7 TeV center of mass energy can be described by a statistical jet-fragmentation model. This model combines microcanonical statistics and super-statistics induced by multiplicity fluctuations. The resulting scale dependence of the parameters of the model turns out to be similar to what was observed in electron-positron annihilations in Urmossy, Barnaf\"oldi, and Bir\'o.Comment: 7 pages, 8 figure

    Chemical equilibration and thermal dilepton production from the quark gluon plasma at finite baryon density

    Get PDF
    The chemical equilibration of a highly unsaturated quark-gluon plasma has been studied at finite baryon density. It is found that in the presence of small amount of baryon density, the chemical equilibration for gluon becomes slower and the temperature decreases less steeply as compared to the baryon free plasma. As a result, the space time integrated yield of dilepton is enhanced if the initial temperature of the plasma is held fixed. Even at a fixed initial energy density, the suppression of the dilepton yields at higher baryo-chemical potential is compensated, to a large extent, by the slow cooling of the plasma.Comment: Latex, 19 pages, 8 postscript figures. To appear in Phys. Rev.

    Enhancement of gluonic dissociation of J/ψJ/\psi in viscous QGP

    Full text link
    We have investigated the effect of viscosity on the gluonic dissociation of J/ψJ/\psi in an equilibrating plasma. Suppression of J/ψJ/\psi due to gluonic dissociation depend on the temperature and also on the chemical equilibration rate. In an equilibrating plasma, viscosity affects the temperature evolution and also the chemical equilibration rate, requiring both of them to evolve slowly compared to their ideal counter part. For Au+Au collisions at RHIC and LHC energies, gluonic dissociation of J/ψJ/\psi increases for a viscous plasma. Low PTP_T J/ψJ/\psi's are found to be more suppressed due to viscosity than the high PTP_T ones. Also the effect is more at LHC energy than at RHIC energy.Comment: 3 pages, 1 figur

    Correlation between nucleotide composition and folding energy of coding sequences with special attention to wobble bases

    Get PDF
    Background: The secondary structure and complexity of mRNA influences its accessibility to regulatory molecules (proteins, micro-RNAs), its stability and its level of expression. The mobile elements of the RNA sequence, the wobble bases, are expected to regulate the formation of structures encompassing coding sequences. Results: The sequence/folding energy (FE) relationship was studied by statistical, bioinformatic methods in 90 CDS containing 26,370 codons. I found that the FE (dG) associated with coding sequences is significant and negative (407 kcal/1000 bases, mean +/- S.E.M.) indicating that these sequences are able to form structures. However, the FE has only a small free component, less than 10% of the total. The contribution of the 1st and 3rd codon bases to the FE is larger than the contribution of the 2nd (central) bases. It is possible to achieve a ~ 4-fold change in FE by altering the wobble bases in synonymous codons. The sequence/FE relationship can be described with a simple algorithm, and the total FE can be predicted solely from the sequence composition of the nucleic acid. The contributions of different synonymous codons to the FE are additive and one codon cannot replace another. The accumulated contributions of synonymous codons of an amino acid to the total folding energy of an mRNA is strongly correlated to the relative amount of that amino acid in the translated protein. Conclusion: Synonymous codons are not interchangable with regard to their role in determining the mRNA FE and the relative amounts of amino acids in the translated protein, even if they are indistinguishable in respect of amino acid coding.Comment: 14 pages including 6 figures and 1 tabl

    Pions and kaons from stringy quark matter

    Full text link
    Different hadron transverse momentum spectra are calculated in a non-extensive statistical, quark-coalescence model. For the low-pT part a gluonic string contribution is conjectured, its length distribution and fractality are fitted to RHIC data.Comment: Contribution to SQM2008 (Beijing

    Modeling Eclipses in the Classical Nova V Persei: The Role of the Accretion Disk Rim

    Full text link
    Multicolor (BVRI) light curves of the eclipsing classical nova V Per are presented, and a total of twelve new eclipse timings are measured for the system. When combined with previous eclipse timings from the literature, these timings yield a revised ephemeris for the times of mid-eclipse given by HJD = 2,447,442.8260(1) + 0.107123474(3) E. The eclipse profiles are analyzed with a parameter-fitting model that assumes four sources of luminosity: a white dwarf primary star, a main-sequence secondary star, a flared accretion disk with a rim, and a bright spot at the intersection of the mass-transfer stream and the disk periphery. A matrix of model solutions are computed, covering an extensive range of plausible parameter values. The solution matrix is then explored to determine the optimum values for the fitting parameters and their associated errors. For models that treat the accretion disk as a flat structure without a rim, optimum fits require that the disk have a flat temperature profile. Although models with a truncated inner disk (R_in >> R_wd) result in a steeper temperature profile, steady-state models with a temperature profile characterized by T(r) \propto r^{-3/4} are found only for models with a significant disk rim. A comparison of the observed brightness and color at mid-eclipse with the photometric properties of the best-fitting model suggests that V Per lies at a distance of ~ 1 kpc.Comment: Accepted for publication in The Astrophysical Journal. Thirty-nine pages, including 9 figures. V2 - updated to include additional references and related discussion to previous work overlooked in the original version, and to correct a typo in the ephemeris given in the abstract. V3 - Minor typos corrected. The paper is scheduled for the 20 June 2006 issue of the ApJ. V4 - An error in equation (9) has been corrected. The results presented in the paper were not affected, as all computations were made using the correct formulation of this equatio
    corecore