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In this Letter, we show that the distribution of the longitudinal momentum fraction of charged hadrons
dN/dz inside jets stemming from proton–proton collisions at

√
s = 7 TeV center of mass energy can be

described by a statistical jet-fragmentation model. This model combines microcanonical statistics and
super-statistics induced by multiplicity fluctuations. The resulting scale dependence of the parameters of
the model turns out to be similar to what was observed in electron–positron annihilations in Urmossy
et al. (2011) [7].

© 2012 Elsevier B.V. Open access under CC BY license.
1. Introduction

When calculating the spectrum of hadrons produced in high-
energy proton–proton (pp) collisions using perturbative quantum
chromodynamics (pQCD) improved parton model calculations [1],
hadron production is described by fragmentation functions [2,3].
Though the evolution of these fragmentation functions with the
scale Q 2 can be understood within the framework of pQCD [4–6],
their actual form at a given scale Q 2 = s0 cannot be deduced from
QCD. In Refs. [7–9], it has been shown that fragmentation func-
tions of charged hadrons, π -s, K -s and Λ-s produced in electron–
positron (e+e−) collisions can be described by a simple statistical
physical model. This model treats hadrons formed in a jet as a
microcanonical ensemble and obtains fragmentation functions via
smearing the single hadron distribution in a jet over the distri-
bution of charged hadron multiplicity measured in e+e− annihi-
lations. The hadron multiplicity distribution is an input in this
model and its derivation is out of the scope of this Letter. Such
calculations in the microcanonical ensemble have been performed
by other groups to describe hadron multiplicity distributions from
e+e− to nucleus–nucleus (A A) collisions [10–12].

The hadron multiplicity distribution used in Ref. [7], namely
the Euler-Gamma distribution, belongs to the family of the Koba–
Nielsen–Olesen (KNO) type distributions [19,20] that describe
measurements in e+e− collisions well [21–23].
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If hadrons created in a single event are distributed according to
the Boltzmann–Gibbs distribution, and the multiplicity or the tem-
perature parameter of the distribution fluctuates according to the
Euler-Gamma function, then the average hadron spectrum will be
the Tsallis–Pareto (or q-canonical) distribution [24–29]. Similarly,
if in a single event hadrons have microcanonical distribution, and
multiplicity fluctuates according to the Euler-Gamma distribution,
then the resulting average hadron spectrum will be a microcanoni-
cal generalisation of the Tsallis–Pareto (or q-microcanonical) distri-
bution [7,8]. It is interesting, that the q-microcanonical distribution
can be obtained within the framework of non-additive thermody-
namics too [30].

In this Letter, we point out that the fragmentation functions
measured in pp collisions at

√
s = 7 TeV collision energy [32,33]

can be described by the q-microcanonical distribution too. Fur-
thermore, the parameters of the distribution show similar scale
dependence as seen in Refs. [34,35].

The structure of this Letter is as follows: in Section 2, we pro-
vide a description of the microcanonical fragmentation model [7].
Section 3 contains the fits of the model to fragmentation func-
tions and multiplicity distributions measured in pp collision at√

s = 7 TeV center of mass energy at the LHC [32,33]. Finally, the
conclusion is presented in Section 4.

2. Microcanonical jet-fragmentation

If the process of the creation of hadrons h1, . . . ,hN by the lead-
ing parton pL of a jet with multiplicity N is such that the corre-
sponding cross-section is simply proportional to the phase space
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available for the hadrons, restricted only by the energy conserva-
tion,

dσ h1,...,hN = |M|2δ(4)

(∑
j

pμ
h j

− Pμ
pL

)
dΩ

∝ δ

(∑
j

εh j − Ejet

)
dΩ, (1)

then the hadrons created in the fragmentation process form a mi-
crocanonical ensemble. In Eq. (1), Ω is the phase space of the cre-
ated hadrons, pμ

h j
is the four-momentum, εh j is the energy of the

hadron h j , Pμ
pL is the four-momentum of the leading parton pL ,

Ejet = P 0
pL

is the energy of the jet, and M is the matrix ampli-
tude describing the process. This way, neglecting hadron masses,
the energy distribution of a hadron inside a jet with multiplicity N
equals to (see Ref. [7])

f N(ε) = Amc(1 − x)D(N−1)−1, (2)

where x = ε/Ejet , ε is the energy of the hadron, D is the effective
dimensionality of the jet and Amc = (DN−1

D

)
DN/(kD E D

jet) follows
from the normalisation condition

N =
∫

dΩp

∫
dp pD−1 f N(ε), (3)

with kD = ∫
dΩp being the angular part of the momentum space

integral. Eq. (2) follows from the microcanonical momentum space
volume at fixed energy and multiplicity,

ΩN(E) = 1

N!
∫ N∏

i=1

dD pi δ

(
E −

N∑
j=1

ε j

)

= [kDΓ (D)]N

N!Γ (DN)
E N D−1, (4)

and the one-particle distribution is obtained as

f N(ε) = ΩN−1(E − ε)

ΩN(E)
. (5)

As particles in a jet form a microcanonical ensemble, an entropy
Sjet = ln ΩN (Ejet) and so a thermodynamical temperature

1

Tjet
= ∂ Sjet

∂ Ejet
= DN − 1

Ejet
(6)

based on the zeroth law of thermodynamics [30,31] can be associated
to them.

Microcanonical treatment of hadron production has also been
proposed in Refs. [7–18] for e+e− , pp and A A reactions. The main
difference between our approach and the ones discussed in [13–
18] is that in order to analyse the distribution of charge-averaged
hadrons inside jets of very high energy and small jetcone, we
do not deal with charge conservation and neglect masses and
transverse momenta of hadrons (transverse with respect to the
jet direction). Thus, jet masses are neglected in our calculations:
M2

jet = (
∑

pμ
i )2 = (

∑
εi)

2 − (
∑

pi)
2 ≈ 0. Consequently, the con-

servation of four-momentum is equivalent to energy conservation
inside a one-dimensional directed jet. This way, instead of the jet
mass Mjet the jet energy Ejet would control the distribution of
hadron multiplicity. This multiplicity distribution we do not derive
here, we rely on empirical fits to measurements instead.

In Refs. [24–29], it has been shown that special event-by-event
fluctuation patterns of the temperature or of the particle multi-
plicity can result in power-law tailed average particle spectra. This
applies even if in each event, particles are distributed according
to the Boltzmann–Gibbs distribution. In Refs. [19–23], it has been
argued that an approximate Koba–Nielsen–Olesen (KNO) scaling of
the multiplicity distribution of charged hadrons holds for electron–
positron collisions (though the scaling is weakly violated by the
scale evolution of the strong fine structure constant αs(Q 2)).

If we consider multiplicity fluctuations of the form

p(N) = βα

Γ (α)
(N − N0)

α−1e−β(N−N0), (7)

and microcanonical single hadron distribution inside each jet (cf.
Eq. (2)) the multiplicity averaged hadron spectrum becomes

1

σ

dσ

dD p
=

∞∑
N=N0

p(N) f N (ε)

≈ A(1 − x)D(N0−1)−1

(1 − q−1
T /Ejet

ln(1 − x))1/(q−1)
. (8)

This result can be obtained by replacing the discrete sum by an
integral, and using Stirling’s formula n! ≈ √

2πn(n/e)n . In terms
of the integration variable ξ = N − N0, only the highest power is
taken into account.

In Eq. (8), N0 is the minimal number of hadrons that must be
produced in the fragmentation process. The newly introduced pa-
rameters are: q = 1 + 1/(α + D + 1) and T = Ejetβ/[D(α + D + 1)].
The parameter q measures the deviation of Eq. (8) from the micro-
canonical distribution Eq. (2). For e+e− data, q > 1 holds, however,
in the limit of q → 1, the hadron distribution

1

σ

dσ

dx
→ Ax D−1(1 − x)D(N−1)−1, (9)

is recovered with N = α/β + N0 being the mean multiplicity.
Since the multiplicity fluctuates from jet to jet, so does the

thermodynamical temperature introduced in Eq. (6). The distribu-
tion of Tjet can be obtained from Eqs. (6) and (7):

p(Tjet) = βα

Γ (α)

D

Ejet
θ2(θ − θ0)

α−1e−β(θ−θ0) (10)

with θ = Ejet/(DTjet), θ0 = Ejet/(DTjet 0) and Tjet 0 = Ejet/[DN0 −1].
The mean value of the thermodynamical temperature is

Tjet = Ejet

D(N − N0)

α

α − 1
+O

(
1/N2). (11)

The T parameter appearing in the multiplicity averaged hadron
spectrum Eq. (8) on the other hand may be referred to as “mean
equipartition temperature”. It is proportional to the average energy
per particle in a jet〈

ε

N − N0

〉
N,�p

=
∑

N

p(N)

∫
dD p f N(ε)

(
ε

N − N0

)

= Ejet

N − N0

α

α − 1

= DT

1 − (D + 2)(q − 1)
. (12)

In the limit q → 1 the mean energy per particle tends to the fa-
miliar result:〈

ε

N − N0

〉
→ DT (if q → 1). (13)
N,�p
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It is also worth noting that if N 	 N0 the usual equipartition for-
mula holds for Tjet:〈

ε

N − N0

〉
N,�p

→ DTjet (if N/N0 → 0). (14)

Finally, from Eqs. (11) and (12), one can conclude that

T = Tjet
[
1 − (D + 2)(q − 1)

] +O
(
1/N2). (15)

3. Analysis of fragmentation functions measured in
√

s = 7 TeV
proton–proton collisions

In the jet analysis reported in Refs. [32,33], very narrow jet-
cones of R = √

�η2 + �φ2 = 0.6 were used where �φ and �η
are the azimuthal angle and pseudorapidity of the hadrons relative
to that of the jet. (η = − ln tan θ , with θ being the polar angle.) For
such a jetcone, it is reasonable to make the approximation

z = phPjet

|Pjet|2 = x cos �θ ≈ x. (16)

Furthermore, jets may be considered to be one-dimensional
bunches of ultra-relativistic particles. This way, the four-momen-
tum of the jet can be approximated as

Pμ
jet = (MT cosh y, MT sinh y,PT )

≈ (P T coshη, P T sinhη,PT ), (17)

where MT and PT are the transverse energy and momentum of the
jet, and y = 0.5 ln[(Ejet + Pjet z)/(Ejet − Pjet z)]. In the following, we
will analyse jets mainly transverse to the beam direction (η = 0),
thus, we may use Ejet ≈ P T . Finally, the z distribution of charged
hadrons takes the form

1

Njet

dN

dz
≈ Az D−1(1 − z)D(N0−1)−1

(1 − q−1
T ∗ ln(1 − z))1/(q−1)

, (18)

with T ∗ = T /P T jet .
In the canonical limit, z 
 1 Eq. (2) tends to the Boltzmann–

Gibbs distribution, and Eq. (18) approaches the q-canonical distri-
bution

1

Njet

dN

dz
→ A

[
1 + q − 1

T ∗ z

]−1/(q−1)

. (19)

Fits of Eq. (18), (19) and (7) to data on fragmentation func-
tions and multiplicity distributions measured in pp collisions at√

s = 7 TeV [32,33] are shown in Figs. 1–4. Figs. 1 and 3 show
that the q-microcanonical (or microcanonical Tsallis–Pareto) distri-
bution, Eq. (18), describes data on dN/dz well. The low z deviation
of the model from the data is assumably due to the low pT cut
used in the jet analysis. Particles with transverse momentum less
than pT 0 = 0.5 GeV/c were not taken into account in the jet anal-
ysis, and the downward curl of the measured data at low z from
Eq. (18) starts around z0 = pT 0/P T jet . Similar conclusions may be
drawn from the data-over-theory plots shown in Fig. 2 for the
q-canonical distribution, Eq. (19), except that this distribution de-
scribes data for z � 0.2 only.

The evolution of the fitted q and T parameters of Eqs. (18)
and (19) with the transverse momentum of the jet are shown
in Figs. 5–8. The “mean equipartition temperature” parameter
scaled by the transverse momentum of the jet T ∗ = T /P T jet shows
power-law dependence on P T jet ,

T ∗ = (P T jet/Q 0)
μ, (20)
Fig. 1. Measured distributions of the longitudinal momentum fraction z of
hadrons inside jets with various transverse momenta (data of jets with P T jet =
[4–6], . . . , [24–40] GeV/c and with P T jet = [25–40], . . . , [400–500] GeV/c are pub-
lished in Ref. [33] and in Ref. [32] respectively) and fitted 1 dimensional q-micro-
canonical distributions (Eq. (18) with D = 1, and N0 = 3 for the high P T jet dataset
and N0 = 1,1,1,2,3 (from bottom to top) for the low P T jet dataset).

Fig. 2. Ratios of measured dN/dz distributions and fitted 1 dimensional q-canonical
distributions (Eq. (19) with D = 1) for jets with various transverse momenta (data
of graphs are published in Refs. [33,32]).

Fig. 3. Ratios of measured dN/dz distributions and fitted 1 dimensional q-micro-
canonical distributions (Eq. (18) with D = 1. For the values of N0, see the caption
of Fig. 1) for jets with various transverse momenta (data of graphs are published in
Refs. [33,32]).
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Fig. 5. Fitted values of the q parameter in Eq. (19) with D = 1 to measured dN/dz
distributions shown in Fig. 1.

Fig. 6. Fitted values of the T ∗ parameter in Eq. (19) with D = 1 to measured dN/dz
distributions shown in Fig. 1.

Fig. 4. Measured multiplicity distributions of charged hadrons inside jets with vari-
ous transverse momenta and rapidity and fitted Euler-Gamma distributions (Eq. (7)).
Data of graphs are published in Refs. [33,32].

Fig. 7. Fitted values of the q parameter in Eq. (18) with D = 1 (for the values of N0,
see the caption of Fig. 1) to measured dN/dz distributions shown in Fig. 1.

Fig. 8. Fitted values of the T ∗ parameter in Eq. (18) with D = 1 (for the values of
N0, see the caption of Fig. 1) to measured dN/dz distributions shown in Fig. 1.

while for the parameter q, both a power-law,

q = (P T jet/Q 0)
μ, (21)

and a double-logarithmic ansatz,

q = 1 + μ ln ln(P T jet/Q 0), (22)

fit. The Q 0 and μ parameters of the q-canonical and the q-
microcanonical distributions approximately coincide within errors.

For q, Eq. (22) was successfully used in Ref. [35] to adjust the
Q 2 evolution of a fragmentation function of the form of Eq. (19) to
that of an AKK type one [2]. In pp collisions, Q = P T jet seems to
be a good choice. The q and T parameters show similar scale de-
pendence for fragmentation functions of protons, K 0-s, π0-s, Λ-s
and charge-averaged hadrons produced in e+e− annihilations as
well as for the transverse momentum spectra of charged hadrons
stemming from pp collisions [7–9,34].

Fig. 4 shows that Eq. (7) describes data on multiplicity distribu-
tions well, except for N < 3, where measured data are higher than
what the Euler-Gamma distribution predicts. This effect is perhaps
due to the small conesize. In a jet with one or two very energetic
particles, the others have very small energies, and thus may fly out
of the jetcone. This way, the number of jets with only a few parti-
cles increases in this type of jet analysis. As a consequence, the α
parameter of Eq. (7), which is greatly influenced by the number of
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low multiplicity jets, cannot be determined reliably. Thus, it is not
so disconcerting that the q parameter predicted from multiplicity
fits takes lower values (of around q = 1.1) than that obtained from
fits to dN/dz data.

It is important to note that in Ref. [33], jets were reconstructed
from charged particles only, while in Ref. [32], calorimetric mea-
surements were used in the jet reconstruction, so both neutral and
charged particles were included in the analysis. For this reason, we
fitted Eqs. (20)–(22) to q and T values obtained for jets with high
transverse momenta only (25 GeV/c � P T jet � 500 GeV/c from
[32]). Nevertheless, q and T values for jets with low transverse
momenta (4 GeV/c � P T jet � 40 GeV/c obtained from [33]) show
a tendency similar to that of the high P T jet jets. The T ∗ parameters
of the low P T jet dataset are approximately 10% higher, than what
the fit of Eq. (20) to the high P T jet dataset predicts (see Fig. 8).
From Eq. (12), it can be seen that T ∗ is proportional to the inverse
of the multiplicity. This way, the ratio of T ∗-s obtained in the two
different analyses is proportional to the ratio of the total multiplic-
ity to that of charged particles. If as an estimate, we used the ratio
of charged to neutral pions, we would get a factor of 3/2 for the
ratio of T ∗-s obtained from the two different analyses. This value
is somewhat higher than what can be seen in Fig. 8.

Eq. (18) describes both datasets. For the high P T jet dataset, the
power of the 1 − z factor in the numerator takes the value D(N0 −
1) − 1 = +1, while this quantity decreases from 1 to −1 for the
low P T jet dataset as P T jet decreases from 40 GeV/c to 4 GeV/c.

4. Conclusions

This Letter shows that the statistical jet-fragmentation model
[7,8] describes the dN/dz distribution of hadrons in jets cre-
ated in proton–proton reactions at

√
s = 7 TeV center of mass

energy [32,33]. This model combines microcanonical statistics
(which has also been used in the description of different hadronic
observables in high-energy phenomena in Refs. [10–17]) with
super-statistics [24–29] stemming from multiplicity fluctuations
emerging in proton–proton as well as in electron–positron and
nucleus–nucleus collisions [19–23].

It turns out that the parameters of the dN/dz distribution of
charged hadrons in jets in proton–proton collisions (Section 3)
show similar scale dependence as the parameters of fragmen-
tation functions in electron–positron annihilations [7–9] and of
transverse momentum spectra of charged hadrons stemming from
proton–proton collisions [34]. These scale evolutions are consistent
with the DGLAP equations [35].

Finally, it is pointed out that the dN/dz distributions ob-
tained from two different jet analyses and different kinematical
ranges [32,33] both can be described by the microcanonical jet-
fragmentation model.
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