512 research outputs found

    Single-valley high-mobility (110) AlAs quantum wells with anisotropic mass

    Full text link
    We studied a doping series of (110)-oriented AlAs quantum wells (QWs) and observed transport evidence of single anisotropic-mass valley occupancy for the electrons in a 150 \AA wide QW. Our calculations of strain and quantum confinement for these samples predict single anisotropic-mass valley occupancy for well widths WW greater than 53 \AA. Below this, double-valley occupation is predicted such that the longitudinal mass axes are collinear. We observed mobility anisotropy in the electronic transport along the crystallographic directions in the ratio of 2.8, attributed to the mass anisotropy as well as anisotropic scattering of the electrons in the X-valley of AlAs

    Similar millennial climate variability on the Iberian margin during two early Pleistocene glacials and MIS 3

    Get PDF
    Although millennial-scale climate variability (<10 ka) has been well studied during the last glacial cycles, little is known about this important aspect of climate in the early Pleistocene, prior to the Middle Pleistocene Transition. Here we present an early Pleistocene climate record at centennial resolution for two representative glacials (marine isotope stages (MIS) 37–41 from approximately 1235 to 1320 ka) during the “41 ka world” at Integrated Ocean Drilling Program Site U1385 (the “Shackleton Site”) on the southwest Iberian margin. Millennial-scale climate variability was suppressed during interglacial periods (MIS 37, MIS 39, and MIS 41) and activated during glacial inceptions when benthic δ18O exceeded 3.2‰. Millennial variability during glacials MIS 38 and MIS 40 closely resembled Dansgaard-Oeschger events from the last glacial (MIS 3) in amplitude, shape, and pacing. The phasing of oxygen and carbon isotope variability is consistent with an active oceanic thermal bipolar see-saw between the Northern and Southern Hemispheres during most of the prominent stadials. Surface cooling was associated with systematic decreases in benthic carbon isotopes, indicating concomitant changes in the meridional overturning circulation. A comparison to other North Atlantic records of ice rafting during the early Pleistocene suggests that freshwater forcing, as proposed for the late Pleistocene, was involved in triggering or amplifying perturbations of the North Atlantic circulation that elicited a bipolar see-saw response. Our findings support similarities in the operation of the climate system occurring on millennial time scales before and after the Middle Pleistocene Transition despite the increases in global ice volume and duration of the glacial cycles

    Valley degeneracy in biaxially strained aluminum arsenide quantum wells

    Full text link
    This paper details a complete formalism for calculating electron subband energy and degeneracy in strained multi-valley quantum wells grown along any orientation with explicit results for the AlAs quantum well case. A standardized rotation matrix is defined to transform from the conventional- cubic-cell basis to the quantum-well-transport basis whereby effective mass tensors, valley vectors, strain matrices, anisotropic strain ratios, and scattering vectors are all defined in their respective bases. The specific cases of (001)-, (110)-, and (111)-oriented aluminum arsenide (AlAs) quantum wells are examined, as is the unconventional (411) facet, which is of particular importance in AlAs literature. Calculations of electron confinement and strain in the (001), (110), and (411) facets determine the critical well width for crossover from double- to single-valley degeneracy in each system. The notation is generalized to include miscut angles, and can be adapted to other multi-valley systems. To help classify anisotropic inter-valley scattering events, a new primitive unit cell is defined in momentum space which allows one to distinguish purely in-plane inter-valley scattering events from those that requires an out-of-plane momentum scattering component.Comment: 17 pages, 4 figures, 2 table

    Assessing the Sustainability of Different Small-Scale Livestock Production Systems in the Afar Region, Ethiopia

    Get PDF
    This research article published by MDPI, 2013Livestock production is a key income source in eastern Africa, and 80% of the total agricultural land is used for livestock herding. Hence, ecological and socio-economically sustainable rangeland management is crucial. Our study aimed at selecting operational economic, environmental and social sustainability indicators for three main pastoral (P), agro-pastoral (AP), and landless intensive (LI) small scale livestock production systems for use in sustainability assessment in Ethiopia. Quantitative and qualitative data were collected through grey literature and semi-structured interviews, assessing livestock and feed resources, production technology, land tenure, financial and gender issues. Our results suggested that feed shortages (FS) are directly related to grazing pressure (G) and inversely related to grass recovery rates (R). According to our indicators, AP was the most sustainable while P and LI were only conditionally sustainable production systems. 93% of 82 interviewees claimed that private land ownership was the best land tenure incentive for efficient rangeland management. Farmers perceived Prosopis juliflora expansion, sporadic rainfall, and disease infestation as the most significant causes for decreasing livestock productivity. Landless intensive farmers had the highest equality in income distribution (Gini Index: GI = 0.4), followed by P and AP (each with a GI = 0.5). Neither educational background nor income seemed to determine grazing species conservation efforts. We claimed that sustainability indicators are valuable tools to highlight shortcomings and strengths of the three main livestock production systems and help with future livestock management in Ethiopia. Selecting suitable indicators, however, is crucial as data requirements and availability can vary across livestock system

    Unique crystal structure of a novel surfactant protein from the foam nest of the frog Leptodactylus vastus.

    Get PDF
    Made available in DSpace on 2018-06-26T01:01:48Z (GMT). No. of bitstreams: 1 cavalcante2014.pdf: 808321 bytes, checksum: a927306da964e003eaa8404a49991b26 (MD5) Previous issue date: 2015-01-19bitstream/item/115835/1/cavalcante2014.pd

    Atomic-Scale Insights into Semiconductor Heterostructures: From Experimental Three-Dimensional Analysis of the Interface to a Generalized Theory of Interfacial Roughness Scattering

    Get PDF
    In this manuscript, we develop a generalized theory for the scattering process produced by interface roughness on charge carriers that is suitable for any semiconductor heterostructure. By exploiting our experimental insights into the three-dimensional atomic landscape of Ge/Ge-Si heterointerfaces obtained by atom probe tomography, we are able to define the full set of interface parameters relevant to the scattering potential, including both the in-plane and axial correlation inside real diffuse interfaces. Our experimental findings indicate a partial coherence of the interface roughness along the growth direction within the interfaces. We show that it is necessary to include this feature, previously neglected by theoretical models, when heterointerfaces characterized by finite interface widths are taken into consideration. To show the relevance of our generalized scattering model in the physics of semiconductor devices, we implement it in a nonequilibrium Green's function simulation platform to assess the performance of a Ge/Si-Ge-based terahertz quantum cascade laser

    Response of stratospheric water vapor and ozone to the unusual timing of El Niño and the QBO disruption in 2015–2016

    Get PDF
    The stratospheric circulation determines the transport and lifetime of key trace gases in a changing climate, including water vapor and ozone, which radiatively impact surface climate. The unusually warm El Niño–Southern Oscillation (ENSO) event aligned with a disrupted Quasi-Biennial Oscillation (QBO) caused an unprecedented perturbation to this circulation in 2015–2016. Here, we quantify the impact of the alignment of these two phenomena in 2015–2016 on lower stratospheric water vapor and ozone from satellite observations. We show that the warm ENSO event substantially increased water vapor and decreased ozone in the tropical lower stratosphere. The QBO disruption significantly decreased global lower stratospheric water vapor and tropical ozone from early spring to late autumn. Thus, this QBO disruption reversed the lower stratosphere moistening triggered by the alignment of the warm ENSO event with westerly QBO in early boreal winter. Our results suggest that the interplay of ENSO events and QBO phases will be crucial for the distributions of radiatively active trace gases in a changing future climate, when increasing El Niño-like conditions and a decreasing lower stratospheric QBO amplitude are expected

    Nonequilibrium wetting transitions with short range forces

    Full text link
    We analyze within mean-field theory as well as numerically a KPZ equation that describes nonequilibrium wetting. Both complete and critical wettitng transitions were found and characterized in detail. For one-dimensional substrates the critical wetting temperature is depressed by fluctuations. In addition, we have investigated a region in the space of parameters (temperature and chemical potential) where the wet and nonwet phases coexist. Finite-size scaling analysis of the interfacial detaching times indicates that the finite coexistence region survives in the thermodynamic limit. Within this region we have observed (stable or very long-lived) structures related to spatio-temporal intermittency in other systems. In the interfacial representation these structures exhibit perfect triangular (pyramidal) patterns in one (two dimensions), that are characterized by their slope and size distribution.Comment: 11 pages, 5 figures. To appear in Physical Review
    corecore