196 research outputs found

    Basal Breast Cancer: A Complex and Deadly Molecular Subtype

    Get PDF
    During the last decade, gene expression profiling of breast cancer has revealed the existence of five molecular subtypes and allowed the establishment of a new classification. The basal subtype, which represents 15-25% of cases, is characterized by an expression profile similar to that of myoepithelial normal mammary cells. Basal tumors are frequently assimilated to triple-negative (TN) breast cancers. They display epidemiological and clinico-pathological features distinct from other subtypes. Their pattern of relapse is characterized by frequent and early relapses and visceral locations. Despite a relative sensitivity to chemotherapy, the prognosis is poor. Recent characterization of their molecular features, such as the dysfunction of the BRCA1 pathway or the frequent expression of EGFR, provides opportunities for optimizing the systemic treatment. Several clinical trials dedicated to basal or TN tumors are testing cytotoxic agents and/or molecularly targeted therapies. This review summarizes the current state of knowledge of this aggressive and hard-to-treat subtype of breast cancer

    Down-Regulation of ECRG4, a Candidate Tumor Suppressor Gene, in Human Breast Cancer

    Get PDF
    INTRODUCTION: ECRG4/C2ORF40 is a potential tumor suppressor gene (TSG) recently identified in esophageal carcinoma. Its expression, gene copy number and prognostic value have never been explored in breast cancer. METHODS: Using DNA microarray and array-based comparative genomic hybridization (aCGH), we examined ECRG4 mRNA expression and copy number alterations in 353 invasive breast cancer samples and normal breast (NB) samples. A meta-analysis was done on a large public retrospective gene expression dataset (n = 1,387) in search of correlations between ECRG4 expression and histo-clinical features including survival. RESULTS: ECRG4 was underexpressed in 94.3% of cancers when compared to NB. aCGH data revealed ECRG4 loss in 18% of tumors, suggesting that DNA loss is not the main mechanism of underexpression. Meta-analysis showed that ECRG4 expression was significantly higher in tumors displaying earlier stage, smaller size, negative axillary lymph node status, lower grade, and normal-like subtype. Higher expression was also associated with disease-free survival (DFS; HR = 0.84 [0.76-0.92], p = 0.0002) and overall survival (OS; HR = 0.72 [0.63-0.83], p = 5.0E-06). In multivariate analysis including the other histo-clinical prognostic features, ECRG4 expression remained the only prognostic factor for DFS and OS. CONCLUSIONS: Our data suggest that ECRG4 is a candidate TSG in breast cancer, the expression of which may help improve the prognostication. If functional analyses confirm this TSG role, restoring ECRG4 expression in the tumor may represent a promising therapeutic approach

    Loss, mutation and deregulation of L3MBTL4 in breast cancers

    Get PDF
    Many alterations are involved in mammary oncogenesis, including amplifications of oncogenes and losses of tumor suppressor genes (TSG). Losses may affect almost all chromosome arms and many TSGs remain to be identified.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    High-Resolution Comparative Genomic Hybridization of Inflammatory Breast Cancer and Identification of Candidate Genes

    Get PDF
    BACKGROUND: Inflammatory breast cancer (IBC) is an aggressive form of BC poorly defined at the molecular level. We compared the molecular portraits of 63 IBC and 134 non-IBC (nIBC) clinical samples. METHODOLOGY/FINDINGS: Genomic imbalances of 49 IBCs and 124 nIBCs were determined using high-resolution array-comparative genomic hybridization, and mRNA expression profiles of 197 samples using whole-genome microarrays. Genomic profiles of IBCs were as heterogeneous as those of nIBCs, and globally relatively close. However, IBCs showed more frequent "complex" patterns and a higher percentage of genes with CNAs per sample. The number of altered regions was similar in both types, although some regions were altered more frequently and/or with higher amplitude in IBCs. Many genes were similarly altered in both types; however, more genes displayed recurrent amplifications in IBCs. The percentage of genes whose mRNA expression correlated with CNAs was similar in both types for the gained genes, but ∼7-fold lower in IBCs for the lost genes. Integrated analysis identified 24 potential candidate IBC-specific genes. Their combined expression accurately distinguished IBCs and nIBCS in an independent validation set, and retained an independent prognostic value in a series of 1,781 nIBCs, reinforcing the hypothesis for a link with IBC aggressiveness. Consistent with the hyperproliferative and invasive phenotype of IBC these genes are notably involved in protein translation, cell cycle, RNA processing and transcription, metabolism, and cell migration. CONCLUSIONS: Our results suggest a higher genomic instability of IBC. We established the first repertory of DNA copy number alterations in this tumor, and provided a list of genes that may contribute to its aggressiveness and represent novel therapeutic targets

    Transition and self-healing process between chaotic and self-organized patterns observed during femtosecond laser writing

    Full text link
    We report evidence of intermittent behavior between chaotic and self-organized patterns while writing lines with a femtosecond lasers on the surface of a fused silica substrate. The patterns are accompanied by resolidified sub-microspheres and non-aligned grating lamellae. We observe that such dynamic behavior exhibits a striking similarity with the fluctuating content of a queuing system which alternate between random busy and idle period

    Whole-genome/exome analysis of circulating tumor DNA and comparison to tumor genomics from patients with heavily pre-treated ovarian cancer: subset analysis of the PERMED-01 trial

    Get PDF
    IntroductionThe poor prognosis of ovarian carcinoma (OvC) is due to the advanced stage at diagnosis, a high risk of relapse after first-line therapies, and the lack of efficient treatments in the recurrence setting. Circulating tumor DNA (ctDNA) analysis is a promising tool to assess treatment-resistant OvC and may avoid iterative tissue biopsies. We aimed to evaluate the genomic profile of recurrent heavily pre-treated OvC.MethodsWe performed tumor panel-based sequencing as well as low-coverage whole-genome sequencing (LC-WGS) of tumor and plasma collected in patients with ovarian cancer included in the PERMED-01 trial. Whole-exome sequencing (WES) data of plasma samples were also analyzed and compared to mutation and copy number alteration (CNA) tumor profiles. The prognostic value [progression-free survival (PFS)] of these alterations was assessed in an exploratory analysis.ResultsTumor and plasma genomic analyses were done for 24 patients with heavily pretreated OvC [67% high-grade serous carcinoma (HGSC)]. Tumor mutation burden was low (median 2.04 mutations/Mb) and the most frequent mutated gene was TP53 (94% of HGSC). Tumor CNAs were frequent with a median of 50% of genome altered fraction. Plasma LC-WGS and WES detected ctDNA in 21/24 cases (88%) with a median tumor fraction of 12.7%. We observed a low correlation between plasma and tumor CNA profiles. However, this correlation was significant in cases with the highest circulating tumor fraction. Plasma genome altered fraction and plasma mutation burden (p = 0.011 and p = 0.041, respectively, log-rank tests) were associated with PFS.ConclusionsCombination of LC-WGS and WES can detect ctDNA in most pre-treated OvCs. Some ctDNA characteristics, such as genome altered fraction and plasma mutation burden, showed prognostic value. ctDNA assessment with LC-WGS may be a promising and non-expansive tool to evaluate disease evolution in this disease with high genomic instability.Clinical Trial Registrationhttps://clinicaltrials.gov/ct2/show/NCT02342158, identifier NCT02342158

    Genome profiling of ERBB2-amplified breast cancers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Around 20% of breast cancers (BC) show <it>ERBB2 </it>gene amplification and overexpression of the ERBB2 tyrosine kinase receptor. They are associated with a poor prognosis but can benefit from targeted therapy. A better knowledge of these BCs, genomically and biologically heterogeneous, may help understand their behavior and design new therapeutic strategies.</p> <p>Methods</p> <p>We defined the high resolution genome and gene expression profiles of 54 <it>ERBB2</it>-amplified BCs using 244K oligonucleotide array-comparative genomic hybridization and whole-genome DNA microarrays. Expression of ERBB2, phosphorylated ERBB2, EGFR, IGF1R and FOXA1 proteins was assessed by immunohistochemistry to evaluate the functional ERBB2 status and identify co-expressions.</p> <p>Results</p> <p>First, we identified the <it>ERBB2</it>-<it>C17orf37</it>-<it>GRB7 </it>genomic segment as the minimal common 17q12-q21 amplicon, and <it>CRKRS </it>and <it>IKZF3 </it>as the most frequent centromeric and telomeric amplicon borders, respectively. Second, GISTIC analysis identified 17 other genome regions affected by copy number aberration (CNA) (amplifications, gains, losses). The expression of 37 genes of these regions was deregulated. Third, two types of heterogeneity were observed in <it>ERBB2</it>-amplified BCs. The genomic profiles of estrogen receptor-postive (ER+) and negative (ER-) <it>ERBB2</it>-amplified BCs were different. The WNT/β-catenin signaling pathway was involved in ER- <it>ERBB2</it>-amplified BCs, and <it>PVT1 </it>and <it>TRPS1 </it>were candidate oncogenes associated with ER+ <it>ERBB2</it>-amplified BCs. The size of the <it>ERBB2 </it>amplicon was different in inflammatory (IBC) and non-inflammatory BCs. <it>ERBB2</it>-amplified IBCs were characterized by the downregulated and upregulated mRNA expression of ten and two genes in proportion to CNA, respectively. IHC results showed (i) a linear relationship between <it>ERBB2 </it>gene amplification and its gene and protein expressions with a good correlation between ERBB2 expression and phosphorylation status; (ii) a potential signaling cross-talk between EGFR or IGF1R and ERBB2, which could influence response of <it>ERBB2</it>-positive BCs to inhibitors. FOXA1 was frequently coexpressed with ERBB2 but its expression did not impact on the outcome of patients with <it>ERBB2</it>-amplified tumors.</p> <p>Conclusion</p> <p>We have shown that ER+ and ER- <it>ERBB2</it>-amplified BCs are different, distinguished <it>ERBB2 </it>amplicons in IBC and non-IBC, and identified genomic features that may be useful in the design of alternative therapeutical strategies.</p

    Frequency, prognostic impact, and subtype association of 8p12, 8q24, 11q13, 12p13, 17q12, and 20q13 amplifications in breast cancers

    Get PDF
    BACKGROUND: Oncogene amplification and overexpression occur in tumor cells. Amplification status may provide diagnostic and prognostic information and may lead to new treatment strategies. Chromosomal regions 8p12, 8q24, 11q13, 17q12 and 20q13 are recurrently amplified in breast cancers. METHODS: To assess the frequencies and clinical impact of amplifications, we analyzed 547 invasive breast tumors organized in a tissue microarray (TMA) by fluorescence in situ hybridization (FISH) and calculated correlations with histoclinical features and prognosis. BAC probes were designed for: (i) two 8p12 subregions centered on RAB11FIP1 and FGFR1 loci, respectively; (ii) 11q13 region centered on CCND1; (iii) 12p13 region spanning NOL1; and (iv) three 20q13 subregions centered on MYBL2, ZNF217 and AURKA, respectively. Regions 8q24 and 17q12 were analyzed with MYC and ERBB2 commercial probes, respectively. RESULTS: We observed amplification of 8p12 (amplified at RAB11FIP1 and/or FGFR1) in 22.8%, 8q24 in 6.1%, 11q13 in 19.6%, 12p13 in 4.1%, 17q12 in 9.9%, 20q13(Z )(amplified at ZNF217 only) in 9.9%, and 20q13(Co )(co-amplification of two or three 20q13 loci) in 8.5% of cases. The 8q24, 12p13, and 17q12 amplifications were correlated with high grade. The most frequent single amplifications were 8p12 (9.8%), 8q24 (3.3%) and 12p13 (3.3%), 20q13(Z )and 20q13(Co )(1.6%) regions. The 17q12 and 11q13 regions were never found amplified alone. The most frequent co-amplification was 8p12/11q13. Amplifications of 8p12 and 17q12 were associated with poor outcome. Amplification of 12p13 was associated with basal molecular subtype. CONCLUSION: Our results establish the frequencies, prognostic impacts and subtype associations of various amplifications and co-amplifications in breast cancers

    Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function

    Get PDF
    Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia ®; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-κB localization and IκB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-κB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-κB and degradation of IκB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-κB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes
    • …
    corecore