49 research outputs found

    Monetary benefits of preventing childhood lead poisoning with lead-safe window replacement

    Get PDF
    Previous estimates of childhood lead poisoning prevention benefits have quantified the present value of some health benefits, but not the costs of lead paint hazard control or the benefits associated with housing and energy markets. Because older housing with lead paint constitutes the main exposure source today in the U.S., we quantify health benefits, costs, market value benefits, energy savings, and net economic benefits of lead-safe window replacement (which includes paint stabilization and other measures). The benefit per resident child from improved lifetime earnings alone is 21,195inpre−1940housingand21,195 in pre-1940 housing and 8,685 in 1940-59 housing (in 2005 dollars). Annual energy savings are 130to130 to 486 per housing unit, with or without young resident children, with an associated increase in housing market value of 5,900to5,900 to 14,300 per housing unit, depending on home size and number of windows replaced. Net benefits are 4,490to4,490 to 5,629 for each housing unit built before 1940, and 491to491 to 1,629 for each unit built from 1940-1959, depending on home size and number of windows replaced. Lead-safe window replacement in all pre-1960 U.S. housing would yield net benefits of at least $67 billion, which does not include many other benefits. These other benefits, which are shown in this paper, include avoided Attention Deficit Hyperactivity Disorder, other medical costs of childhood lead exposure, avoided special education, and reduced crime and juvenile delinquency in later life. In addition, such a window replacement effort would reduce peak demand for electricity, carbon emissions from power plants, and associated long-term costs of climate change

    A path forward in the debate over health impacts of endocrine disrupting chemicals

    Get PDF
    Several recent publications reflect debate on the issue of “endocrine disrupting chemicals” (EDCs), indicating that two seemingly mutually exclusive perspectives are being articulated separately and independently. Considering this, a group of scientists with expertise in basic science, medicine and risk assessment reviewed the various aspects of the debate to identify the most significant areas of dispute and to propose a path forward. We identified four areas of debate. The first is about the definitions for terms such as “endocrine disrupting chemical”, “adverse effects”, and “endocrine system”. The second is focused on elements of hormone action including “potency”, “endpoints”, “timing”, “dose” and “thresholds”. The third addresses the information needed to establish sufficient evidence of harm. Finally, the fourth focuses on the need to develop and the characteristics of transparent, systematic methods to review the EDC literature. Herein we identify areas of general consensus and propose resolutions for these four areas that would allow the field to move beyond the current and, in our opinion, ineffective debate

    Metabolic Requirements of Blood Vessels in a Perfusion Bioreactor

    Get PDF
    Small caliber vessel grafts are one of the major challenges of vascular tissue engineering. A variety of processes have been developed to create vascular grafts from scaffolds and donor cells in bioreactors. In order to optimize such processes, this study focused on monitoring vessel metabolism under conditions typically used in perfusion protocols. Bovine veins were perfused in a bioreactor for four days. Group 1 vessels served as controls and were perfused with standard medium. Medium of group 2 was adjusted to the viscosity of blood. Group 3 vessels were additionally challenged with elevated luminal pressure. Contractile function was assessed in an organ bath. Tissue viability was determined by tetrazolium dye reduction. Oxygen gradients, dextrose consumption, and lactate production were monitored using a blood gas analyzer. KCl induced contractions did not differ between days 0 and 4. Norepinephrine dose-response curves of group 3 vessels achieved a higher maximum contraction on day 4, with no changes of EC50. Tissue viability was not altered by any of the perfusion conditions. Oxygen gradients across the vessels did not change with time but were elevated in group 2, with no signs of oxygen depletion. Dextrose consumption and lactate formation of group 1 and 2 vessels appeared to be stoichiometric. In contrast, group 3 vessels produced more lactate than dextrose could supply. These results indicate that conventional oxygenation of culture media is sufficient to meet the oxygen consumption of a functional vessel. Elevated shear forces increased the oxygen demand without affecting dextrose consumption. Elevated shear forces and luminal pressure caused the utilization of alternative energy sources. Thus online monitoring of key metabolic parameters appears to be a desirable feature of perfusion bioreactors for vascular tissue engineering

    Identification and reduction of cryoinjury in endothelial cells: a first step toward establishing a cell bank for vascular tissue engineering.

    No full text
    We analyzed a cryopreservation protocol which improves long-term storage of endothelial cells (EC) for tissue engineering purposes. Human umbilical vein EC were frozen in a high-potassium solution containing 10% dimethyl sulfoxide using 3 different cooling rates. After a storage time in liquid nitrogen of 1, 4, or 12 months, samples were thawed and compared to fresh cells in terms of growth rates, anti-inflammatory, and anticoagulant functions. Independent of cooling rate and storage time, the retrieval after cryopreservation ranged between 60% and 80%. However, viability of the cells cryopreserved at 10 degrees C/min decreased significantly from 78 +/- 5% to 64 +/-3% with storage. Storage time of 4 months resulted in a decreased cell multiplication factor over 4 and 12 days in culture. The lag phases returned to normal in the next passage. Thawed cells showed increased metabolic activity, reduced expression of thrombomodulin, and unchanged basal expression of adhesion molecules. However, the tumor necrosis factor-induced expression of adhesion molecules was significantly increased after long-term storage. This effect was partially compensated after expansion of the cells, whereas the prostacyclin release increased. Expansion of cryopreserved/thawed EC resulted in highly proliferative cells with antithrombotic properties and a capacity for inflammatory reactions, which makes them suitable for vascular tissue engineering

    Cryopreservation of human endothelial cells for vascular tissue engineering.

    No full text
    To investigate the influence of cryopreservation on endothelial cell growth, morphology, and function human umbilical vein endothelial cells (HUVECs) were frozen following a standard protocol. Cell suspensions were exposed to 10% dimethyl sulfoxide in a high-potassium solution, cooled to -80 degrees C at 1 degrees C/min and stored in liquid nitrogen for 7-36 days. Samples were thawed in a 37 degrees C water bath and the cryoprotectant was removed by serial dilution. The growth of cell suspensions was assayed by culturing 7300 cells/cm2 for 3-5 days in order to determine the cell multiplication factor. Fresh and cryopreserved/thawed cells were analyzed for their growth, and their anti-inflammatory and anti-coagulant function by using cellular ELISA. Cryopreservation resulted in a retrieval of 66 +/- 5% and a viability of 79 +/- 3%. Cryopreserved/thawed and fresh cells showed identical doubling times and identical cell counts in the confluent monolayers. However, the lag phase of thawed HUVECs was approximately 36 h longer, resulting in significant differences in the cell multiplication factor at 3 and 5 days after seeding. After expansion to a sufficient cell count the lag phases were identical. Fresh and cryopreserved/thawed cells showed comparable anti-inflammatory and anti-coagulant activity, as judged by the basal and TNF-induced VCAM-1, ICAM-1, E-selectin, and thrombomodulin expression. Cryopreserved/thawed and recultivated endothelial cells are suitable for endothelialization of autologous allograft veins. Such tissue-engineered grafts will offer the necessary clinical safety for those patients who lack autologous material

    Properties of the human umbilical vein as a living scaffold for a tissue-engineered vessel graft.

    No full text
    Umbilical cords are usually discarded after delivery, even though they contain a set of functional vessels. We investigated whether the human umbilical vein (HUV) is suitable as a storable scaffold for the tissue engineering of small-caliber vessel grafts. Isolated HUVs were cryopreserved by freezing or vitrification. The reaction of the vessels to vasoactive compounds and the mechanical properties were determined in an organ bath. Mitochondrial metabolism, release of antithrombotic compounds, and platelet adhesion were measured on the luminal vessel surface. Seeding with endothelial cells was tested on denuded HUVs. The vessels showed a weak response to norepinephrine but were readily contracted by serotonin and by the thromboxane A2 mimetic U46619. Endothelium-dependent vasorelaxation was weak, reaching significance only for histamine. However, the vessels relaxed to sodium nitroprusside, and to acetylcholine if sandwiched with human saphenous vein. Cryopreservation did not change the mechanical properties in the relevant tension range. Vasoconstriction to potassium chloride and serotonin were reduced after freezing (22.9+/-7.6%, 27.7+/-10.2%) and after vitrification (2.6+/-5.8%, 4.3+/-7.1%). The mitochondrial metabolism was also attenuated after freezing (57.9+/-25.9%) and after vitrification (21.7+/-6.7%). Prostacyclin release was elevated after both cryopreservation procedures (4.0-fold, 3.9-fold), whereas there was no significant change in the adhesion of platelets. Denuded HUVs could readily be seeded with isolated endothelial cells before and after freezing. We conclude that HUV is suitable as a storable living scaffold with antithrombogenic properties

    Tissue Engineering of Small Caliber Vessel Grafts from Human Umbilical Veins

    Get PDF
    Human umbilical veins (HUV) have recently been suggested as a starting material for vascular tissue engineering. HUV possess a functional smooth muscle layer and could be turned into an immunologically inert graft with contractile properties by creating a neoendothelium from the recipient's own cells. This study investigated methods to remove the native endothelium without impairing the contractile function of the smooth muscle layer. These denuded HUV were then seeded with endothelial cells in a perfusion bioreactor, demonstrating the creation of a confluent, shear-resistant neoendothelium
    corecore