33 research outputs found

    Microbial Monitoring Challenges and Needs for Mars Applications

    Get PDF
    The monitoring of microorganisms will be an important part of a mission to Mars. Microbial monitoring equipment will be needed to look for the presence of microorganisms on the planet, to confirm that planetary protection measures are working, to monitor the health of plants, bioreactors and humans living in a habitat and to monitor the performance of the life support systems that will keep them alive during their stay on Mars. Coordinating the different microbial monitoring needs during the early days of mission planning, can provide NASA with equipment that could meet more than one need while also providing complementary analysis options, which can enhance the research capabilities. The early coordination between the different NASA groups that will need microbial monitoring equipment on the surface of Mars, could also make the mission more affordable, as development of the needed equipment could be potentially cost shared

    Inflight Microbial Monitoring- An Alternative Method to Culture Based Detection Currently Used on the International Space Station

    Get PDF
    Previous research has shown that potentially destructive microorganisms and human pathogens have been detected on the International Space Station (ISS). The likelihood of introducing new microorganisms occurs with every exchange of crew or addition of equipment or supplies. Microorganisms introduced to the ISS are readily transferred between crew and subsystems (i.e. ECLSS, environmental control and life support systems). Current microbial characterization methods require enrichment of microorganisms and at least a 48-hour incubation time. This increases the microbial load while detecting only a limited number of the total microorganisms. The culture based method detects approximately 1-10% of the total organisms present and provides no identification. To identify and enumerate ISS microbes requires that samples be returned to Earth for complete analysis. Therefore, a more expedient, low-cost, in-flight method of microbial detection, identification, and enumeration is warranted. The RAZOR EX, a ruggedized, commercial off the shelf, real-time PCR field instrument was tested for its ability to detect microorganisms at low concentrations within one hour. Escherichia coli, Salmonella enterica Typhimurium, and Pseudomonas aeruginosa were detected at low levels using real-time DNA amplification. Total heterotrophic counts could also be detected using a 16S gene marker that can identify up to 98% of all bacteria. To reflect viable cells found in the samples, RNA was also detectable using a modified, single-step reverse transcription reaction

    Inflight Microbial Monitoring-An Alternative Method to Culture Based Detection Currently Used on International Space Station

    Get PDF
    Previous research has shown that microorganisms and potential human pathogens have been detected on the International Space Station (ISS). The potential to introduce new microorganisms occurs with every exchange of crew or addition of equipment or supplies. Previous research has shown that microorganisms introduced to the ISS are readily transferred between crew and subsystems and back (i.e. ECLSS, environmental control and life support systems). Current microbial characterization methods require enrichment of microorganisms and a 48-hour incubation time. This increases the microbial load while detecting a limited number of microorganisms. The culture based method detects approximately 1-10% of the total organisms present and provides no identification, To identify and enumerate ISS samples requires that samples to be returned to Earth for complete analysis. Therefore, a more expedient, low-cost, in-flight method of microbial detection, identification, and enumeration is warranted. The RAZOR EX, a ruggedized, commercial off the shelf, real-time PCR field instrument was tested for its ability to detect microorganism at low concentrations within one hour. Escherichia coli, Salmonella enterica Typhimurium, and Pseudomonas aeruginosa were detected at low levels using real-time DNA amplification. Total heterotrophic counts could also be detected using a 16S gene marker that can identify up to 98% of all bacteria. To reflect viable cells found in the samples, RNA was also detectable using a modified, single-step reverse transcription reaction

    Comparison of Sample and Detection Quantification Methods for Salmonella Enterica from Produce

    Get PDF
    The purpose of this study was to identify and optimize fast and reliable sampling and detection methods for the identification of pathogens that may be present on produce grown in small vegetable production units on the International Space Station (ISS), thus a field setting. Microbiological testing is necessary before astronauts are allowed to consume produce grown on ISS where currently there are two vegetable production units deployed, Lada and Veggie

    Dormancy and Recovery Testing for Biological Wastewater Processors

    Get PDF
    Bioreactors, such as aerated membrane type bioreactors have been proposed and studied for a number of years as an alternate approach for treating wastewater streams for space exploration. Several challenges remain before these types of bioreactors can be used in space settings, including transporting the bioreactors with their microbial communities to space, whether that be the International Space Station or beyond, or procedures for safing the systems and placing them into dormant state for later start-up. Little information is available on such operations as it is not common practice for terrestrial systems. This study explored several dormancy processes for established bioreactors to determine optimal storage and recovery conditions. Procedures focused on complete isolation of the microbial communities from an operational standpoint and observing the effects of: 1) storage temperature, and 2) storage with or without the reactor bulk fluid. The first consideration was tested from a microbial integrity and power consumption standpoint; both room temperature (25 C) and cold (4 C) storage conditions were studied. The second consideration was explored; again, for microbial integrity as well as plausible real-world scenarios of how terrestrially established bioreactors would be transported to microgravity and stored for periods of time between operations. Biofilms were stored without the reactor bulk fluid to simulate transport of established biofilms into microgravity, while biofilms stored with the reactor bulk fluid simulated the most simplistic storage condition to implement operations for extended periods of nonuse. Dormancy condition did not have an influence on recovery in initial studies with immature biofilms (48 days old), however, a lengthy recovery time was required (20+ days). Bioreactors with fully established biofilms (13 months) were able to recover from a 7-month dormancy period to steady state operation within 4 days (approximately 1 residence cycle). Results indicate a need for future testing on biofilm age and health and further exploration of dormancy length

    Fiber Attachment Module Experiment (FAME): Using a Multiplexed Miniature Hollow Fiber Membrane Bioreactor Solution for Rapid Process Testing

    Get PDF
    Bioreactor research is mostly limited to continuous stirred-tank reactors (CSTRs) which are not an option for microgravity (g) applications due to the lack of a gravity gradient to drive aeration as described by the Archimedes principle. Bioreactors and filtration systems for treating wastewater in g could avoid the need for harsh pretreatment chemicals and improve overall water recovery. Solution: Membrane Aerated Bioreactors (MABRs) for g applications, including possible use for wastewater treatment systems for the International Space Station (ISS)

    Microorganism Utilization for Synthetic Milk Production

    Get PDF
    A desired architecture for long duration spaceflight, such as aboard the International Space Station (ISS) or for future missions to Mars, is to provide a supply of fresh food crops for the astronauts. However, some crops can create a high proportion of inedible plant waste. The main goal of this project was to produce the components of milk (sugar, lipid, protein) from inedible plant waste by utilizing microorganisms (fungi, yeast, bacteria). Of particular interest was utilizing the valuable polysaccharide, cellulose, found in plant waste, to naturally fuel- through microorganism cellular metabolism- the creation of sugar (glucose), lipid (milk fat), and protein (casein) to produce a synthetic edible food product. Environmental conditions such as pH, temperature, carbon source, aeration, and choice microorganisms were optimized in the laboratory and the desired end-products, sugars and lipids, were analyzed. Trichoderma reesei, a known cellulolytic fungus, was utilized to drive the production of glucose, with the intent that the produced glucose would serve as the carbon source for milk fat production and be a substitute for the milk sugar lactose. Lipid production would be carried out by Rhodosporidium toruloides, yeast known to accumulate those lipids that are typically found in milk fat. Results showed that glucose and total lipid content were below what was expected during this phase of experimentation. In addition, individual analysis of six fatty acids revealed that the percentage of each fatty acid was lower than naturally produced bovine milk. Overall, this research indicates that microorganisms could be utilized to breakdown inedible solid waste to produce useable products

    Microbial Monitoring of Common Opportunistic Pathogens by Comparing Multiple Real-Time PCR Platforms for Potential Space Applications

    Get PDF
    Because the International Space Station is a closed environment with rotations of astronauts and equipment that each introduce their own microbial flora, it is necessary to monitor the air, surfaces, and water for microbial contamination. Current microbial monitoring includes labor- and time-intensive methods to enumerate total bacterial and fungal cells, with limited characterization, during in-flight testing. Although this culture-based method is sufficient for monitoring the International Space Station, on future long-duration missions more detailed characterization will need to be performed during flight, as sample return and ground characterization may not be available. At a workshop held in 2011 at NASA's Johnson Space Center to discuss alternative methodologies and technologies suitable for microbial monitoring for these long-term exploration missions, molecular-based methodologies such as polymerase chain reaction (PCR) were recommended. In response, a multi-center (Marshall Space Flight Center, Johnson Space Center, Jet Propulsion Laboratory, and Kennedy Space Center) collaborative research effort was initiated to explore novel commercial-off-the-shelf hardware options for space flight environmental monitoring. The goal was to evaluate quantitative or semi-quantitative PCR approaches for low-cost in-flight rapid identification of microorganisms that could affect crew safety. The initial phase of this project identified commercially available platforms that could be minimally modified to perform nominally in microgravity. This phase was followed by proof-of-concept testing of the highest qualifying candidates with a universally available challenge organism, Salmonella enterica. The analysis identified two technologies that were able to perform sample-to-answer testing with initial cell sample concentrations between 50 and 400 cells. In addition, the commercial systems were evaluated for initial flight safety and readiness

    Microbial Monitoring of Common Opportunistic Pathogens by Comparing Multiple Real-time PCR Platforms for Potential Space Applications

    Get PDF
    Current methods for microbial detection: a) Labor & time intensive cultivation-based approaches that can fail to detect or characterize all cells present. b) Requires collection of samples on orbit and transportation back to ground for analysis. Disadvantages to current detection methods: a) Unable to perform quick and reliable detection on orbit. b) Lengthy sampling intervals. c) No microbe identification
    corecore