14 research outputs found

    KAOSS: turbulent, but disc-like kinematics in dust-obscured star-forming galaxies at z ∼ 1.3–2.6

    Get PDF
    We present spatially resolved kinematics of 27 ALMA-identified dust-obscured star-forming galaxies (DSFGs) at z ∼ 1.3–2.6, as traced by Hα emission using VLT/KMOS near-infrared integral field spectroscopy from the ‘KMOS-ALMA Observations of Submillimetre Sources’ (KAOSS) Large Programme. We derive Hα rotation curves and velocity dispersion profiles for the DSFGs, and find that among the 27 sources with bright, spatially extended Hα emission, 24 display evidence for disc-like kinematics. We measure a median inclination-corrected velocity at 2.2 Rd of vrot = 190 ± 40 km s−1 and intrinsic velocity dispersion of σ0 = 87 ± 6 km s−1 for these disc-like sources. The kinematics yield median circular velocities of vcirc = 230 ± 20 km s−1 and dynamical masses within 2Re (∼ 7 kpc radius) of Mdyn = (1.1 ± 0.2) × 1011 M⊙. Compared to less actively star-forming galaxies, KAOSS DSFGs are both faster rotating with higher intrinsic velocity dispersions, but have similar vrot/σ0 ratios, median v/σ0 = 2.5 ± 0.5. We suggest that the kinematics of the DSFGs are primarily rotation supported but with a non-negligible contribution from pressure support, which may be driven by star formation or mergers/interactions. We estimate the normalization of the stellar mass Tully–Fisher relation (sTFR) for the disc-like DSFGs and compare it with local studies, finding no evolution at fixed slope between z ∼ 2 and z ∼ 0. Finally, we show that the kinematic properties of the DSFG population are consistent with them evolving into massive early-type galaxies, the dominant z ∼ 0 population at these masses

    KAOSS: turbulent, but disc-like kinematics in dust-obscured star-forming galaxies at zz\sim1.3-2.6

    Full text link
    We present spatially resolved kinematics of 31 ALMA-identified dust-obscured star-forming galaxies (DSFGs) at zz\sim1.3-2.6, as traced by Hα\alpha emission using VLT/KMOS near-infrared integral field spectroscopy from our on-going Large Programme ''KMOS-ALMA Observations of Submillimetre Sources'' (KAOSS). We derive Hα\alpha rotation curves and velocity dispersion profiles for the DSFGs. Of the 31 sources with bright, spatially extended Hα\alpha emission, 25 display rotation curves that are well fit by a Freeman disc model, enabling us to measure a median inclination-corrected velocity at 2.2RdR_{\rm d} of vrotv_{\rm rot} = 190 ±\pm 30 kms1^{-1} and a median intrinsic velocity dispersion of σ0\sigma_0 = 87 ±\pm 6 kms1^{-1} for these disc-like\textit{disc-like} sources. By comparison with less actively star-forming galaxies, KAOSS DSFGs are both faster rotating and more turbulent, but have similar vrot/σ0v_{\rm rot}/\sigma_0 ratios, median 2.4 ±\pm 0.5. We suggest that vrot/σ0v_{\rm rot}/\sigma_0 alone is insufficient to describe the kinematics of DSFGs, which are not kinematically ''cold'' discs, and that the individual components vrotv_{\rm rot} and σ0\sigma_0 indicate that they are in fact turbulent, but rotationally supported systems in \sim50 per cent of cases. This turbulence may be driven by star formation or mergers/interactions. We estimate the normalisation of the stellar Tully-Fisher relation (sTFR) for the disc-like DSFGs and compare it with local studies, finding no evolution at fixed slope between zz\sim2 and zz\sim0. Finally, we use kinematic estimates of DSFG halo masses to investigate the stellar-to-halo mass relation, finding our sources to be consistent with shock heating and strong feedback which likely drives the declining stellar content in the most massive halos.Comment: 20 pages, 12 figures, submitted to MNRAS, updated author lis

    An ALMA/NOEMA survey of the molecular gas properties of high-redshift star-forming galaxies

    Get PDF
    We have used ALMA and NOEMA to study the molecular gas reservoirs in 61 ALMA-identified submillimetre galaxies (SMGs) in the COSMOS, UDS, and ECDFS fields. We detect 12CO (⁠Jup= 2–5) emission lines in 50 sources, and [C I](3P1 − 3P0) emission in eight, at z= 1.2–4.8 and with a median redshift of 2.9 ± 0.2. By supplementing our data with literature sources, we construct a statistical CO spectral line energy distribution and find that the 12CO line luminosities in SMGs peak at Jup ∼ 6, consistent with similar studies. We also test the correlations of the CO, [C I], and dust as tracers of the gas mass, finding the three to correlate well, although the CO and dust mass as estimated from the 3-mm continuum are preferable. We estimate that SMGs lie mostly on or just above the star-forming main sequence, with a median gas depletion timescale, tdep = Mgas/SFR, of 210 ± 40 Myr for our sample. Additionally, tdep declines with redshift across z ∼ 1–5, while the molecular gas fraction, μgas = Mgas/M*, increases across the same redshift range. Finally, we demonstrate that the distribution of total baryonic mass and dynamical line width, Mbaryon–σ, for our SMGs is consistent with that followed by early-type galaxies in the Coma cluster, providing strong support to the suggestion that SMGs are progenitors of massive local spheroidal galaxies. On the basis of this, we suggest that the SMG populations above and below an 870-μm flux limit of S870 ∼ 5 mJy may correspond to the division between slow and fast rotators seen in local early-type galaxies

    JWST's TEMPLATES for Star Formation: The First Resolved Gas-Phase Metallicity Maps of Dust-Obscured Star-Forming Galaxies at zz \sim 4

    Full text link
    We present the first spatially resolved maps of gas-phase metallicity for dust-obscured star-forming galaxies (DSFGs) at zz \sim 4, from the JWST TEMPLATES Early Release Science program, derived from NIRSpec integral field unit spectroscopy of the Hα\alpha and [NII] emission lines. Empirically derived literature optical line calibrations are used to determine that the sources are highly metal rich, with both appearing to display regions of supersolar metallicity, particularly in SPT2147-50. While we cannot rule out shocks or AGN in these regions, we suggest that the two systems have already undergone significant enrichment as a result of their extremely high star-formation rates. Utilising ALMA rest-frame 380μ\mum continuum and [CI](3^3P2_2-3^3P1_1) line maps we compare metallicity and gas-to-dust ratio variations in the two galaxies, finding the two to be anticorrelated on highly resolved spatial scales, consistent with various literature studies of zz \sim 0 galaxies. The data are indicative of the enormous potential of JWST to probe the enrichment of the interstellar medium on \simkpc scales in extremely dust-obscured systems at zz \sim 4 and beyond.Comment: 12 pages, 5 figures, submitted to Ap

    JWST's TEMPLATES for Star Formation: The First Resolved Gas-phase Metallicity Maps of Dust-obscured Star-forming Galaxies at z ∼ 4

    Get PDF
    We present the first spatially resolved maps of gas-phase metallicity for two dust-obscured star-forming galaxies at z ∼ 4, from the JWST TEMPLATES Early Release Science program, derived from NIRSpec integral field unit spectroscopy of the Hα and [N ii] emission lines. Empirical optical line calibrations are used to determine that the sources are globally enriched to near-solar levels. While one source shows elevated [N ii]/Hα ratios and broad Hα emission consistent with the presence of an active galactic nucleus in a ≳1 kpc region, we argue that both systems have already undergone significant metal enrichment as a result of their extremely high star formation rates. Utilizing Atacama Large Millimeter/submillimeter Array rest-frame 380 μm continuum and [Ci](3P2–3P1) line maps we compare the spatial variation of the metallicity and gas-to-dust ratio in the two galaxies, finding the two properties to be anticorrelated on highly resolved spatial scales, consistent with various literature studies of z ∼ 0 galaxies. The data are indicative of the enormous potential of JWST to probe the enrichment of the interstellar medium on ∼kpc scales in extremely dust-obscured systems at z ∼ 4 and beyond

    VLA Legacy Survey of Molecular Gas in Massive Star-forming Galaxies at High Redshift

    No full text
    We present the initial results of an ongoing survey with the Karl G. Jansky Very Large Array targeting the CO(J = 1-0) transition in a sample of 30 submillimeter-selected, dusty star-forming galaxies (SFGs) at z = 2-5 with existing mid-J CO detections from the Atacama Large Millimeter/submillimeter Array and NOrthern Extended Millimeter Array, of which 17 have been fully observed. We detect CO(1-0) emission in 11 targets, along with three tentative (∼1.5σ-2σ) detections; three galaxies are undetected. Our results yield total molecular gas masses of 6-23 × 1010 (α CO/1) M ⊙, with gas mass fractions, f gas = M mol/(M *+M mol), of 0.1-0.8 and a median depletion time of (140 ± 70) Myr. We find median CO excitation ratios of r 31 = 0.75 ± 0.39 and r 41 = 0.63 ± 0.44, with significant scatter. We find no significant correlation between the excitation ratio and a number of key parameters such as redshift, CO(1-0) line width, or ΣSFR. We only find a tentative positive correlation between r 41 and the star-forming efficiency, but we are limited by our small sample size. Finally, we compare our results to predictions from the SHARK semi-analytical model, finding a good agreement between the molecular gas masses, depletion times, and gas fractions of our sources and their SHARK counterparts. Our results highlight the heterogeneous nature of the most massive SFGs at high redshift, and the importance of CO(1-0) observations to robustly constrain their total molecular gas content and interstellar medium properties.</p

    KAOSS: turbulent, but disc-like kinematics in dust-obscured star-forming galaxies at z~1.3-2.6

    No full text
    We present spatially resolved kinematics of 27 ALMA-identified dust-obscured star-forming galaxies (DSFGs) at z ∼ 1.3–2.6, as traced by Hα emission using VLT/KMOS near-infrared integral field spectroscopy from the ‘KMOS-ALMA Observations of Submillimetre Sources’ (KAOSS) Large Programme. We derive Hα rotation curves and velocity dispersion profiles for the DSFGs, and find that among the 27 sources with bright, spatially extended Hα emission, 24 display evidence for disc-like kinematics. We measure a median inclination-corrected velocity at 2.2 Rd of vrot = 190 ± 40 km s−1 and intrinsic velocity dispersion of σ0 = 87 ± 6 km s−1 for these disc-like sources. The kinematics yield median circular velocities of vcirc = 230 ± 20 km s−1 and dynamical masses within 2Re (∼ 7 kpc radius) of Mdyn = (1.1 ± 0.2) × 1011 M⊙. Compared to less actively star-forming galaxies, KAOSS DSFGs are both faster rotating with higher intrinsic velocity dispersions, but have similar vrot/σ0 ratios, median v/σ0 = 2.5 ± 0.5. We suggest that the kinematics of the DSFGs are primarily rotation supported but with a non-negligible contribution from pressure support, which may be driven by star formation or mergers/interactions. We estimate the normalization of the stellar mass Tully–Fisher relation (sTFR) for the disc-like DSFGs and compare it with local studies, finding no evolution at fixed slope between z ∼ 2 and z ∼ 0. Finally, we show that the kinematic properties of the DSFG population are consistent with them evolving into massive early-type galaxies, the dominant z ∼ 0 population at these masses

    KAOSS: turbulent, but disc-like kinematics in dust-obscured star-forming galaxies at <i>z</i> ∼ 1.3–2.6

    No full text
    We present spatially resolved kinematics of 27 ALMA-identified dust-obscured star-forming galaxies (DSFGs) at z ∼ 1.3–2.6, as traced by Hα emission using VLT/KMOS near-infrared integral field spectroscopy from the “KMOS-ALMA Observations of Submillimetre Sources” (KAOSS) Large Programme. We derive Hα rotation curves and velocity dispersion profiles for the DSFGs, and find that among the 27 sources with bright, spatially extended Hα emission, 24 display evidence for disc-like kinematics. We measure a median inclination-corrected velocity at 2.2 Rd of vrot = 190 ± 40 km s−1 and intrinsic velocity dispersion of σ0 = 87 ± 6 km s−1 for these disc-like sources. The kinematics yield median circular velocities of vcirc = 230 ± 20 km s−1 and dynamical masses within 2Re (∼ 7 kpc radius) of Mdyn = (1.1 ± 0.2) × 1011 M⊙. Compared to less actively star-forming galaxies, KAOSS DSFGs are both faster rotating with higher intrinsic velocity dispersions, but have similar vrot/σ0 ratios, median v/σ0 = 2.5 ± 0.5. We suggest that the kinematics of the DSFGs are primarily rotation supported but with a non-negligible contribution from pressure support, which may be driven by star formation or mergers/interactions. We estimate the normalisation of the stellar mass Tully-Fisher relation (sTFR) for the disc-like DSFGs and compare it with local studies, finding no evolution at fixed slope between z ∼ 2 and z ∼ 0. Finally, we show that the kinematic properties of the DSFG population are consistent with them evolving into massive early-type galaxies, the dominant z ∼ 0 population at these masses

    KAOSS:turbulent, but disc-like kinematics in dust-obscured star-forming galaxies at z ∼ 1.3–2.6

    No full text
    We present spatially resolved kinematics of 27 ALMA-identified dust-obscured star-forming galaxies (DSFGs) at z ∼ 1.3–2.6, as traced by Hα emission using VLT/KMOS near-infrared integral field spectroscopy from the ‘KMOS-ALMA Observations of Submillimetre Sources’ (KAOSS) Large Programme. We derive Hα rotation curves and velocity dispersion profiles for the DSFGs, and find that among the 27 sources with bright, spatially extended Hα emission, 24 display evidence for disc-like kinematics. We measure a median inclination-corrected velocity at 2.2 Rd of vrot = 190 ± 40 km s−1 and intrinsic velocity dispersion of σ0 = 87 ± 6 km s−1 for these disc-like sources. The kinematics yield median circular velocities of vcirc = 230 ± 20 km s−1 and dynamical masses within 2Re (∼ 7 kpc radius) of Mdyn = (1.1 ± 0.2) × 1011 M∘. Compared to less actively star-forming galaxies, KAOSS DSFGs are both faster rotating with higher intrinsic velocity dispersions, but have similar vrot/σ0 ratios, median v/σ0 = 2.5 ± 0.5. We suggest that the kinematics of the DSFGs are primarily rotation supported but with a non-negligible contribution from pressure support, which may be driven by star formation or mergers/interactions. We estimate the normalization of the stellar mass Tully–Fisher relation (sTFR) for the disc-like DSFGs and compare it with local studies, finding no evolution at fixed slope between z ∼ 2 and z ∼ 0. Finally, we show that the kinematic properties of the DSFG population are consistent with them evolving into massive early-type galaxies, the dominant z ∼ 0 population at these masses.</p

    The JCMT SCUBA-2 Survey of the James Webb Space Telescope North Ecliptic Pole Time-Domain Field

    Get PDF
    The James Webb Space Telescope Time-Domain Field (JWST-TDF) is an ∼14′ diameter field near the North Ecliptic Pole that will be targeted by one of the JWST Guaranteed Time Observations programs. Here, we describe our James Clerk Maxwell Telescope SCUBA-2 850 μm imaging of the JWST-TDF and present the submillimeter source catalog and properties. We also present a catalog of radio sources from Karl J. Jansky Very Large Array 3 GHz observations of the field. These observations were obtained to aid JWSTʼs study of dust-obscured galaxies that contribute significantly to cosmic star formation at high redshifts. Our deep 850 μm map covers the JWSTTDF at a noise level of σ850mm = 1.0 mJy beam−1 , detecting 83/31 sources in the main/supplementary signal-tonoise ratio (S/N > 4 / S/N = 3.5–4) sample, respectively. The 3 GHz observations cover a 24′ diameter field with a 1σ noise of 1 μJy beam−1 at a 0 7 FWHM. We identified eighty-five 3 GHz counterparts to sixty-six 850 μm sources and then matched these with multiwavelength data from the optical to the mid-infrared wave bands. We performed spectral energy distribution fitting for 61 submillimeter galaxies (SMGs) matched with optical/nearinfrared data, and found that SMGs at S/N > 4 have a median value of zphot = 2.22 ± 0.12, star formation rates of 300 ± 40 Me yr−1 (Chabrier initial mass function), and typical cold dust masses of 5.9 ± 0.7 × 108 Me, in line with bright SMGs from other surveys. The large cold dust masses indicate correspondingly large cool gas masses, which we suggest are a key factor necessary to drive the high star formation rates seen in this population
    corecore