620 research outputs found

    Recent progress in the synthesis of homotropane alkaloids adaline, euphococcinine and N-methyleuphococcinine

    Get PDF
    The 9-azabicyclo[3.3.1]nonane ring system is present in several insect- and plant-derived alkaloids. (−)-Adaline (1) and (+)-euphococcinine (2), found in secretions of Coccinelid beetles, and (+)-N-methyleuphococcinine (3), isolated from the Colorado blue spruce Picea pungens, are members of this alkaloid family. Their unique bicyclic system with a quaternary stereocenter, and the potent biological activity exerted by these homotropane alkaloids, make them attractive synthetic targets. This work aims briefly to review the chemical ecology of Adalia bipunctata and the recent methodologies to obtain adaline (1), euphococcinine (2), and N-methyleuphococcinine (3)

    Novel use of stir bar sorptive extraction (SBSE) as a tool for isolation of oviposition site attractants for gravid Culex quinquefasciatus

    Get PDF
    Mosquitoes such as Culex quinquefasciatus Say (Diptera: Culicidae) are important vectors of organisms that cause disease in humans. Research into the development of effective standardized odour baits for blood-fed females (oviposition attractants), to enable entomological monitoring of vector populations, is hampered by complex protocols for extraction of physiologically active volatile chemicals from natural breeding site water samples, which have produced inconsistent results. Air entrainment and solvent extraction are technically demanding methods and are impractical for use in resource poor environments where mosquito-borne disease is most prevalent. This study reports the first use of a simple, robust extraction technique, stir bar sorptive extraction (SBSE), to extract behaviourally active small lipophilic molecules (SLMs) present in water samples collected from Cx. quinquefasciatus breeding sites in Tanzania. Extracts from a pit latrine and from a cess pool breeding site attracted more gravid Cx. quinquefasciatus in pair choice bioassays than control extracts, and coupled gas chromatography-electroantennography (GC-EAG) allowed tentative identification of 15 electrophysiologically active chemicals, including the known oviposition attractant, skatole (3-methylindole). Here, we have demonstrated, using simple pair choice bioassays in controlled laboratory conditions, that SBSE is effective for the extraction of behaviourally and electrophysiologically active semiochemicals from mosquito breeding site waters. Further research is required to confirm that SBSE is an appropriate technique for use in field surveys in the search for oviposition cues for Cx. quinquefasciatus

    Sustainable risk management of emerging contaminants in municipal wastewaters

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright @ 2009 The Royal Society.The presence of emerging contaminants in municipal wastewaters, particularly endocrine-disrupting compounds such as oestrogenic substances, has been the focus of much public concern and scientific attention in recent years. Due to the scientific uncertainty still surrounding their effects, the Precautionary Principle could be invoked for the interim management of potential risks. Therefore, precautionary prevention risk-management measures could be employed to reduce human exposure to the compounds of concern. Steroid oestrogens are generally recognized as the most significant oestrogenically active substances in domestic sewage effluent. As a result, the UK Environment Agency has championed a ‘Demonstration Programme’ to investigate the potential for removal of steroid oestrogens and alkylphenol ethoxylates during sewage treatment. Ecological and human health risks are interdependent, and ecological injuries may result in increased human exposures to contaminants or other stressors. In this context of limiting exposure to potential contaminants, examining the relative contribution of various compounds and pathways should be taken into account when identifying effective risk-management measures. In addition, the explicit use of ecological objectives within the scope of the implementation of the EU Water Framework Directive poses new challenges and necessitates the development of ecosystem-based decision tools. This paper addresses some of these issues and proposes a species sensitivity distribution approach to support the decision-making process related to the need and implications of sewage treatment work upgrade as risk-management measures to the presence of oestrogenic compounds in sewage effluent

    Clinical and service implications of a cognitive analytic therapy model of psychosis

    Get PDF
    Cognitive analytic therapy (CAT) is an integrative, interpersonal model of therapy predicated on a radically social concept of self, developed over recent years in the UK by Anthony Ryle. A CAT-based model of psychotic disorder has been developed much more recently based on encouraging early experience in this area. The model describes and accounts for many psychotic experiences and symptoms in terms of distorted, amplified or muddled enactments of normal or ‘neurotic’ reciprocal role procedures (RRPs) and of damage at a meta-procedural level to the structures of the self. Reciprocal role procedures are understood in CAT to represent the outcome of the process of internalization of early, sign-mediated, interpersonal experience and to constitute the basis for all mental activity, normal or otherwise. Enactments of maladaptive RRPs generated by early interpersonal stress are seen in this model to constitute a form of ‘internal expressed emotion’. Joint description of these RRPs and their enactments (both internally and externally) and their subsequent revision is central to the practice of CAT during which they are mapped out through written and diagrammatic reformulations. This model may usefully complement and extend existing approaches, notably recent CBT-based interventions, particularly with ‘difficult’ patients, and generate meaningful and helpful understandings of these disorders for both patients and their treating teams. We suggest that use of a coherent and robust model such as CAT could have important clinical and service implications in terms of developing and researching models of these disorders as well as for the training of multidisciplinary teams in their effective treatment

    Contactless electroreflectance and theoretical studies of band gap and spin-orbit splitting in InP1-xBix dilute bismide with x <= 0.034

    Get PDF
    Contactless electroreflectance is applied to study the band gap (E-0) and spin-orbit splitting (Delta(SO)) in InP1-xBix alloys with 0 < x <= 0.034. The E-0 transition shifts to longer wavelengths very significantly (-83 meV/% Bi), while the E0 + Delta(SO) transition shifts very weakly (-13 meV/% Bi) with the rise of Bi concentration. These changes in energies of optical transitions are discussed in the context of the valence band anticrossing model and ab initio calculations. Shifts of E-0 and E-0 + Delta(SO) transitions, obtained within ab-initio calculations, are -106 and -20 meV per % Bi, respectively, which is in a good agreement with experimental results

    Dietary intake of benzo(a)pyrene and risk of esophageal cancer in north of Iran

    No full text
    One etiologic factor for high incidence of esophageal squamous cell carcinoma (ESCC) in Golestan (Northeastern Iran) might be exposure to polycyclic aromatic hydrocarbons. We examined whether food and water are major sources of benzo(a)pyrene (BaP) exposure in this population. We used a dietary questionnaire to assess the daily intake of staple food (rice and bread) and water in 3 groups: 40 ESCC Golestan cases, 40 healthy subjects from the same area, and 40 healthy subjects from a low-risk area in Southern Iran. We measured, by high-performance liquid chromatography combined with fluorescence detection, the BaP concentration of bread, rice, and water in samples obtained from these 3 groups and calculated the daily intake of BaP. Mean BaP concentration of staple foods and water was similar and within standard levels in both areas, but the daily intake of BaP was higher in controls from the high-risk area than in controls from the low-risk area (91.4 vs. 70.6 ng/day, P < 0.01). In the multivariate regression analysis, having ESCC had no independent effect on BaP, whereas residence in the low-risk area was associated with a significant decrease in total BaP intake. Polycyclic aromatic hydrocarbons might, along with other risk factors, contribute to the high risk of ESCC in Golestan. Copyright © 2008, Taylor & Francis Group, LLC

    Priming of indirect defence responses in maize is shown to be genotype-specific

    Get PDF
    Priming is an induced defence mechanism in which plants that have been exposed to elicitors, such as herbivore-induced plant volatiles (HIPVs), go into an alert state with faster and stronger responses against a future biotic challenge. This study evaluated whether HIPVs emitted by maize genotypes after herbivory by fall armyworm (Spodoptera frugiperda) larvae could prime neighbouring maize plants for an enhanced indirect defence response, and if priming was consistent across different genotypes. Two genotypes were selected based on their differences in HIPV emission: Sintético Spodoptera (SS), a relatively high emitter of HIPVs, and L3, a relatively low emitter of HIPVs. SS plants that were previously exposed to SS HIPVs initiated earlier and enhanced volatile production upon larval challenge, compared to SS plants that were previously exposed to SS undamaged plant volatiles. In addition, SS plants exposed to SS HIPVs and then to larval challenge attracted an egg parasitoid, Telenomus remus, at an earlier stage than SS plants that were only subjected to larval challenge, indicating a priming effect. There was no evidence of a priming response by L3 plants that were previously exposed to L3 or SS HIPVs. When comparing the gene expression of HIPV-exposed and undamaged plant volatile (UDV)-exposed plants, jasmonate-induced protein GRMZM2G05154 and UDP-glucosyltransferase bx8 genes related to the biosynthesis of DIBOA-Glu were upregulated. These data indicate that priming by HIPVs enhances indirect defence in maize plants as reported by other studies, and provide new information showing that the priming effect can be genotype-specific

    Semiochemicals from herbivory induced cotton plants enhance the foraging behavior of the cotton boll weevil, Anthonomus grandis.

    Get PDF
    The boll weevil, Anthonomus grandis, has been monitored through deployment of traps baited with aggregation pheromone components. However, field studies have shown that the number of insects caught in these traps is significantly reduced during cotton squaring, suggesting that volatiles produced by plants at this phenological stage may be involved in attraction. Here, we evaluated the chemical profile of volatile organic compounds (VOCs) emitted by undamaged or damaged cotton plants at different phenological stages, under different infestation conditions, and determined the attractiveness of these VOCs to adults of A. grandis. In addition, we investigated whether or not VOCs released by cotton plants enhanced the attractiveness of the aggregation pheromone emitted by male boll weevils. Behavioral responses of A. grandis to VOCs from conspecific-damaged, heterospecificdamaged (Spodoptera frugiperda and Euschistus heros) and undamaged cotton plants, at different phenological stages, were assessed in Y-tube olfactometers. The results showed that volatiles emitted from reproductive cotton plants damaged by conspecifics were attractive to adults boll weevils, whereas volatiles induced by heterospecific herbivores were not as attractive. Additionally, addition of boll weevil-induced volatiles fromreproductive cotton plants to aggregation pheromone gave increased attraction, relative to the pheromone alone. The VOC profiles of undamaged and mechanically damaged cotton plants, in both phenological stages, were not different. Chemical analysis showed that cotton plants produced qualitatively similar volatile profiles regardless of damage type, but the quantities produced differed according to the plant?s phenological stage and the herbivore species. Notably, vegetative cotton plants released higher amounts of VOCs compared to reproductive plants. At both stages, the highest rate of VOC release was observed in A. grandis-damaged plants. Results show that A. grandis uses conspecific herbivore-induced volatiles in host location, and that homoterpene compounds, such as (E)-4,8-dimethylnona-1,3,7?triene and (E,E)-4,8,12-trime-thyltrideca-1,3,7,11-tetraene and the monoterpene (E)-ocimene, may be involved in preference for host plants at the reproductive stage

    On the heat capacity of adsorbed phases using molecular simulation

    Get PDF
    The heat capacities of argon, ammonia, and methanol on carbon black at 87.3, 240, and 300 K, respectively, have been investigated. The carbon black surface has been modeled with and without carbonyl groups. Part of this investigation is a decomposition of the heat capacity into its contributions from the different interaction potentials of an adsorption system. All systems show a spectrum of heat capacity versus loading, and this behavior depends on the carbonyl configuration present on the surface. For methanol and ammonia the variation of the heat capacity between the two for the same carbonyl configurations is greater than the variation in the heat of adsorption. Heat capacities of methanol and ammonia are generally dominated by fluid-fluid interactions due to the strong association of fluid particles through hydrogen bonding. The difference in the heat capacity behavior of the two fluids is an indicator of their different clustering behaviors on the carbon black surface. The presence of carbonyl groups reduces the fluid-fluid contributions to the heat capacity. This is due to the compensation of fluid-fluid interactions with fluid-functional group interactions. At 87.3 K a first layer transition to a solidlike state is present for argon and results in a large peak in the heat capacity on a bare surface. The presence of functional groups greatly reduces this peak in the heat capacity by disrupting the packing of argon on the surface and preventing a transition to a solidlike state. (c) 2007 American Institute of Physics
    corecore