539 research outputs found

    Charges of Exceptionally Twisted Branes

    Full text link
    The charges of the exceptionally twisted (D4 with triality and E6 with charge conjugation) D-branes of WZW models are determined from the microscopic/CFT point of view. The branes are labeled by twisted representations of the affine algebra, and their charge is determined to be the ground state multiplicity of the twisted representation. It is explicitly shown using Lie theory that the charge groups of these twisted branes are the same as those of the untwisted ones, confirming the macroscopic K-theoretic calculation. A key ingredient in our proof is that, surprisingly, the G2 and F4 Weyl dimensions see the simple currents of A2 and D4, respectively.Comment: 19 pages, 2 figures, LaTex2e, complete proofs of all statements, updated bibliograph

    Max Schottelius : Pioneer in Pheochromocytoma

    Get PDF
    First descriptions of diseases attract tremendous interest because they reveal scientific insight even in retrospect. Max Schottelius, the pathologist contributing the first histological description of pheochromocytoma, remains anonymous. We reviewed the description by Schottelius and weighed the report in modern context. Schottelius described the classical diagnostic elements of pheochromocytoma, including the brown appearance after exposure to chromate-containing Mueller's fixative. This color change, known as chromaffin reaction, results fromoxidation of catecholamines and is reflected in the name pheochromocytoma, meaning dusky-colored chromate-positive tumor. Thus Schottelius performed the first known histochemical contribution to diagnosis, which is today standard with immunohistochemistry for chromogranin. Copyright (c) 2017 Endocrine Society This article has been published under the terms of the Creative Commons Attribution NonCommercial, No-Derivatives License (CC BY-NC-ND).Peer reviewe

    Mammographic breast density refines Tyrer-Cuzick estimates of breast cancer risk in high-risk women: findings from the placebo arm of the International Breast Cancer Intervention Study I

    Get PDF
    Introduction: Mammographic density is well-established as a risk factor for breast cancer, however, adjustment for age and body mass index (BMI) is vital to its clinical interpretation when assessing individual risk. In this paper we develop a model to adjust mammographic density for age and BMI and show how this adjusted mammographic density measure might be used with existing risk prediction models to identify high-risk women more precisely. Methods: We explored the association between age, BMI, visually assessed percent dense area and breast cancer risk in a nested case-control study of women from the placebo arm of the International Breast Cancer Intervention Study I (72 cases, 486 controls). Linear regression was used to adjust mammographic density for age and BMI. This adjusted measure was evaluated in a multivariable logistic regression model that included the Tyrer-Cuzick (TC) risk score, which is based on classical breast cancer risk factors. Results: Percent dense area adjusted for age and BMI (the density residual) was a stronger measure of breast cancer risk than unadjusted percent dense area (odds ratio per standard deviation 1.55 versus 1.38; area under the curve (AUC) 0.62 versus 0.59). Furthermore, in this population at increased risk of breast cancer, the density residual added information beyond that obtained from the TC model alone, with the AUC for the model containing both TC risk and density residual being 0.62 compared to 0.51 for the model containing TC risk alone (P =0.002). Approximately 16% of controls and 19% of cases moved into the highest risk group (8% or more absolute risk of developing breast cancer within 10 years) when the density residual was taken into account. The net reclassification index was +15.7%. Conclusions: In women at high risk of breast cancer, adjusting percent mammographic density for age and BMI provides additional predictive information to the TC risk score, which already incorporates BMI, age, family history and other classic breast cancer risk factors. Furthermore, simple selection criteria can be developed using mammographic density, age and BMI to identify women at increased risk in a clinical setting

    Branching rules of semi-simple Lie algebras using affine extensions

    Full text link
    We present a closed formula for the branching coefficients of an embedding p in g of two finite-dimensional semi-simple Lie algebras. The formula is based on the untwisted affine extension of p. It leads to an alternative proof of a simple algorithm for the computation of branching rules which is an analog of the Racah-Speiser algorithm for tensor products. We present some simple applications and describe how integral representations for branching coefficients can be obtained. In the last part we comment on the relation of our approach to the theory of NIM-reps of the fusion rings of WZW models with chiral algebra g_k. In fact, it turns out that for these models each embedding p in g induces a NIM-rep at level k to infinity. In cases where these NIM-reps can be be extended to finite level, we obtain a Verlinde-like formula for branching coefficients.Comment: 11 pages, LaTeX, v2: one reference added, v3: Clarified proof of Theorem 2, completely rewrote and extended Section 5 (relation to CFT), added various references. Accepted for publication in J. Phys.

    About Attitudes and Perceptions: Finding the Proper Way to Consider Latent Variables in Discrete Choice Models

    Full text link
    We provide an in-depth theoretical discussion about the differences between attitudes and perceptions, as well as an empirical exercise to analyze its effects. This discussion is of importance, as the large majority of papers considering attitudinal latent variables, just consider those as attributes affecting directly the utility of a certain alternative while systematic taste variations are rarely taken into account and perceptions are normally completely ignored. The results of our case study show that perceptions may indeed affect the decision making process and that they are able to capture a significant part of the variability that is normally explained by alternative specific constants. In the same line, our results indicate that attitudes may be a reason for systematic taste variations, and that a proper categorization of the latent variables, in accordance with the underlying theory, may outperform the customary assumption of linearity
    corecore