10 research outputs found

    Multiple perspectives on product-service transition and its influence on business model design in manufacturing firms

    Get PDF
    Business practice shows that manufacturing firms recently strive for securing and enhancing their competitive position by overcoming their traditional product-centric way of acting and employing a service-related strategy. This product-service transition provides benefits for manufacturing firms such as differentiation opportunities, a new source of revenues, as well as the option to create a better fit to changed customer behavior. However, many manufacturing firms are not able to benefit from a service-related strategy as they fail to establish a business model that supports product-service transition and therefore experience difficulties in operationalizing such a strategy. However, research has by now not paid sufficient attention to the identification of business models that support product-service transition and to the change process that comes along with implementing a new business model. Moreover, research on product-service transition usually focuses on various servicerelated aspects and analyzes them in isolation. Such a decoupled analysis does not foster a holistic understanding how manufacturing firms can benefit from service-related strategies. By employing the business model as a new unit of analysis and using qualitative-empirical research, this thesis (1) overcomes the narrow, unidimensional focus on product-service transition as it provides evidence that manufacturing firms employ different service strategies that are reflected in different distinct business model configurations in order to pursue product-service transition; (2) analyzes business model change processes in established manufacturing firms in detail and shows that business model change in the context of productservice transition is very often an incremental and emergent process; (3) highlights antecedents that influence a manufacturing firm’s business model design choice as well as barriers that decelerate the business model change process in the context of product-service transition

    The Hitchhiker\u27s Guide to Europe: the infection dynamics of an ongoing Wolbachia invasion and mitochondrial selective sweep in Rhagoletis cerasi

    Get PDF
    Wolbachia is a maternally inherited and ubiquitous endosymbiont of insects. It can hijack host reproduction by manipulations such as cytoplasmic incompatibility (CI) to enhance vertical transmission. Horizontal transmission of Wolbachia can also result in the colonization of new mitochondrial lineages. In this study, we present a 15-year-long survey of Wolbachia in the cherry fruit fly Rhagoletis cerasi across Europe and the spatiotemporal distribution of two prevalent strains, wCer1 and wCer2, and associated mitochondrial haplotypes in Germany. Across most of Europe, populations consisted of either 100% singly (wCer1) infected individuals with haplotype HT1, or 100% doubly (wCer1&2) infected individuals with haplotype HT2, differentiated only by a single nucleotide polymorphism. In central Germany, singly infected populations were surrounded by transitional populations, consisting of both singly and doubly infected individuals, sandwiched between populations fixed for wCer1&2. Populations with fixed infection status showed perfect association of infection and mitochondria, suggesting a recent CI-driven selective sweep of wCer2 linked with HT2. Spatial analysis revealed a range expansion for wCer2 and a large transition zone in which wCer2 splashes appeared to coalesce into doubly infected populations. Unexpectedly, the transition zone contained a large proportion (22%) of wCer1&2 individuals with HT1, suggesting frequent intraspecific horizontal transmission. However, this horizontal transmission did not break the strict association between infection types and haplotypes in populations outside the transition zone, suggesting that this horizontally acquired Wolbachiainfection may be transient. Our study provides new insights into the rarely studied Wolbachia invasion dynamics in field populations

    Histological processing of un-/cellularized thermosensitive electrospun scaffolds

    Get PDF
    Histological processing of thermosensitive electrospun poly(ε-caprolactone)/poly(l-lactide) (PCL/PLA) scaffolds fails, as poly(ε-caprolactone) (PCL) is characterized by its low-melting temperature (Tm = 60 °C). Here, we present an optimized low-temperature preparation method for the histological processing of un-/cellularized thermosensitive PCL/PLA scaffolds. Our study is aimed at the establishment of an optimized dehydration and low-melting-point paraffin-embedding method of electrospun PCL/PLA scaffolds (un-/cellularized). Furthermore, we compared this method with (a) automatized dehydration and standard paraffin embedding, (b) gelatin embedding followed by automatized dehydration and standard paraffin embedding, (c) cryofixation, and (d) acrylic resin embedding methods. We investigated pepsin and proteinase K antigen retrieval for their efficiency in epitope demasking at low temperatures and evaluated protocols for immunohistochemistry and immunofluorescence for cytokeratin 7 (CK7) and in situ padlock probe technology for beta actin (ACTB). Optimized dehydration and low-melting-point paraffin embedding preserved the PCL/PLA scaffold, as the diameter and structure of its fibers were unchanged. Cells attached to the PCL/PLA scaffolds showed limited alterations in size and morphology compared to control. Epitope demasking by enzymatic pepsin digestion and immunostaining of CK7 displayed an invasion of attached cells into the scaffold. Expression of ACTB and CK7 was shown by a combination of mRNA-based in situ padlock probe technology and immunofluorescence. In contrast, gelatin stabilization followed by standard paraffin embedding led to an overall shrinkage and melting of fibers, and therefore, no further analysis was possible. Acrylic resin embedding and cyrofixation caused fiber structures that were nearly unchanged in size and diameter. However, acrylic resin-embedded scaffolds are limited to 3 µm sections, whereas cyrofixation led to a reduction of the cell size by 14% compared to low-melting paraffin embedding. The combination of low-melting-point paraffin embedding and pepsin digestion as an antigen retrieval method offers a successful opportunity for histological investigations in thermosensitive specimens
    corecore