134 research outputs found
Mate recognition and reproductive isolation in the sibling species Spodoptera littoralis and Spodoptera litura
Mate recognition is crucial for reproductive isolation and for maintaining species integrity. Chemosensory-mediated sexual communication with pheromones is an essential component of mate recognition in moths. Confronted with sex pheromone stimuli released from conspecific and closely related heterospecific females, which partially overlap in chemical composition, male moths are under strong selection to recognize compatible mates. Here, we investigated the role of pheromone signals in premating communication in the sibling species Spodoptera littoralis and S. litura (Lepidoptera, Noctuidae). Further, we measured the reproductive consequence of conspecific vs. heterospecific matings. Both species use Z9,E11–14:Ac as the major pheromone compound, and the 11-component blend found in pheromone glands of S. littoralis comprises the compounds found in S. litura. Accordingly, S. littoralis and S. litura males readily responded to conspecific and heterospecific calling females in no-choice behavioral tests. In contrast, in a dual-choice test, S. littoralis males choose conspecific calling females, whereas S. litura males did not discriminate between conspecific and heterospecific females. In S. littoralis females, heterospecific matings had a negative fitness effect as compared to conspecific matings. Female longevity, egg-laying and hatching of larvae were significantly reduced by matings with heterospecific males. Reciprocal crossings, between S. litura females and S. littoralis males, were prevented by genital morphology, which is consistent with reduced heterospecific attraction of S. littoralis males in a dual-choice assay. On the other hand, matings between S. littoralis females and S. litura males, under a no-choice situation, show that interspecific matings occur in zones of geographical overlap and corroborate the idea that mate quality, in these closely related species, is a continuous and not a categorical trait
Flight attraction of Spodoptera littoralis (Lepidoptera, Noctuidae) to cotton headspace and synthetic volatile blends
The insect olfactory system discriminates odor signals of different biological relevance, which drive innate behavior. Identification of stimuli that trigger upwind flight attraction toward host plants is a current challenge, and is essential in developing new, sustainable plant protection methods, and for furthering our understanding of plant-insect interactions. Using behavioral, analytical and electrophysiological studies, we here show that both females and males of the Egyptian cotton leafworm,Spodoptera littoralis(Lepidoptera, Noctuidae), use blends of volatile compounds to locate their host plant, cotton,Gossypium hirsutum(Malvales, Malvaceae). FemaleS. littoraliswere engaged in upwind orientation flight in a wind tunnel when headspace collected from cotton plants was delivered through a piezoelectric sprayer. Although males took off toward cotton headspace significantly fewer males than females flew upwind toward the sprayed headspace. Subsequent assays with antennally active synthetic compounds revealed that a blend of nonanal, (Z)-3 hexenyl acetate, (E)-β-ocimene, and (R)-(+)-limonene was as attractive as cotton headspace to females and more attractive to males. Two compounds, 4,8-dimethyl-1,3(E),7-nonatriene (DMNT) and (R)-(−)-linalool, both known plant defense compounds may have reduced the flight attraction of both females and males; more moths were attracted to blends without these two compounds, however, other compounds such as benzaldehyde may also be behavioral antagonists. Our findings provide a platform for further investigations on host plant signals mediating innate behavior, and for the development of novel insect plant protection strategies againstS. littoralis
The chemical code for attracting Culex mosquitoes
Mosquitoes use chemical codes to locate and discriminate among vertebrate hosts to obtain a blood meal. Recent advances have allowed for the identification of the chemical codes used by mosquitoes to locate and discriminate humans from other vertebrate hosts. Humans are incidental "dead-end" hosts for the West Nile virus, which is maintained in an enzootic cycle, primarily through its transmission between infected birds by Culex mosquitoes. Host-seeking Culex mosquitoes are attracted to the odor of chicken, which are used in sentinel traps to monitor West Nile virus transmission. Using combined gas chromatography and electroantennography and mass spectrometry we identify a blend of volatile organic compounds present in chicken emanates, including mostly salient bioactive compounds previously identified in human emanates. When released at their identified ratios, this blend elicits behavioral responses of Culex pipiens molestus and Culex quinquefasciatus similar to that to the natural chicken odor. Tested under field conditions, this blend attract Culex spp. and other species of mosquitoes using birds among their hosts. This study provides evidence for conserved chemical codes for resource location by mosquitoes, and highlights the intricate role of CO2 for host-seeking mosquitoes. The identification of conserved chemical codes, which drive innate preference behaviors that are fundamental for survival and reproduction, provides important substrates for future control interventions targeting disease vector mosquitoes
Floral to green: mating switches moth olfactory coding and preference
Mating induces profound physiological changes in a wide range of insects, leading to behavioural adjustments to match the internal state of the animal. Here, we show for the first time, to our knowledge, that a noctuid moth switches its olfactory response from food to egg-laying cues following mating. Unmated females of the cotton leafworm (Spodoptera littoralis) are strongly attracted to lilac flowers (Syringa vulgaris). After mating, attraction to floral odour is abolished and the females fly instead to green-leaf odour of the larval host plant cotton, Gossypium hirsutum. This behavioural switch is owing to a marked change in the olfactory representation of floral and green odours in the primary olfactory centre, the antennal lobe (AL). Calcium imaging, using authentic and synthetic odours, shows that the ensemble of AL glomeruli dedicated to either lilac or cotton odour is selectively up- and downregulated in response to mating. A clear-cut behavioural modulation as a function of mating is a useful substrate for studies of the neural mechanisms underlying behavioural decisions. Modulation of odour-driven behaviour through concerted regulation of odour maps contributes to our understanding of state-dependent choice and host shifts in insect herbivores
Nuclear deformation and neutron excess as competing effects for pygmy dipole strength
The electromagnetic dipole strength below the neutron-separation energy has
been studied for the xenon isotopes with mass numbers A = 124, 128, 132, and
134 in nuclear resonance fluorescence experiments using the ELBE bremsstrahlung
facility at Helmholtz-Zentrum Dresden-Rossendorf and the HIgS facility at
Triangle Universities Nuclear Laboratory Durham. The systematic study gained
new information about the influence of the neutron excess as well as of nuclear
deformation on the strength in the region of the pygmy dipole resonance. The
results are compared with those obtained for the chain of molybdenum isotopes
and with predictions of a random-phase approximation in a deformed basis. It
turned out that the effect of nuclear deformation plays a minor role compared
with the one caused by neutron excess. A global parametrization of the strength
in terms of neutron and proton numbers allowed us to derive a formula capable
of predicting the summed E1 strengths in the pygmy region for a wide mass range
of nuclides.Comment: 5 pages, subimtted to Physical Review Letter
Recommended from our members
The Mass Tracking System -- Computerized support for MC and A and operations at FCF
As part of Argonne National Laboratory`s Fuel Conditioning Facility (FCF), a computer-based Mass-Tracking (MTG) System has been developed. The MTG System collects, stores, retrieves and processes data on all operations which directly affect the flow of process material through FCF and supports such activities as process modeling, compliance with operating limits (e.g., criticality safety), material control and accountability and operational information services. Its architecture is client/server, with input and output connections to operator`s equipment-control stations on the floor of FCF as well as to dumb terminals and terminal emulators. Its heterogeneous database includes a relational-database manager as well as both binary and ASCII data files. The design of the database, and the software that supports it, is based on a model of discrete accountable items distributed in space and time and constitutes a complete historical record of the material processed in FCF. Although still under development, much of the MTG system has been qualified and is in production use
Field Attractants for Pachnoda interrupta Selected by Means of GC-EAD and Single Sensillum Screening
The sorghum chafer, Pachnoda interrupta Olivier (Coleoptera: Scarabaeidae: Cetoniinae), is a key pest on sorghum, Sorghum bicolor (L.) Moench (Poaceae), in Ethiopia. At present there is a lack of efficient control methods. Trapping shows promise for reduction of the pest population, but would benefit from the development of attractive lures. To find attractants that could be used for control of P. interrupta, either by mass trapping or by monitoring as part of integrated pest management, we screened headspace collections of sorghum and the highly attractive weed Abutilon figarianum Webb (Malvaceae) for antennal activity using gas chromatograph-coupled electroantennographic detection (GC-EAD). Compounds active in GC-EAD were identified by combined gas chromatography and mass spectrometry (GC-MS). Field trapping suggested that attraction is governed by a few influential compounds, rather than specific odor blends. Synthetic sorghum and abutilon odor blends were attractive, but neither blend outperformed the previously tested attractants eugenol and methyl salicylate, of which the latter also was part of the abutilon blend. The strong influence of single compounds led us to search for novel attractive compounds, and to investigate the role of individual olfactory receptor neurons (ORNs) in the perception of kairomones. We screened the response characteristics of ORNs to 82 putative kairomones in single sensillum recordings (SSR), and found a number of key ligand candidates for specific classes of ORNs. Out of these key ligand candidates, six previously untested compounds were selected for field trapping trials: anethole, benzaldehyde, racemic 2,3-butanediol, isoamyl alcohol, methyl benzoate and methyl octanoate. The compounds were selected on the basis that they activated different classes of ORNs, thus allowing us to test potential kairomones that activate large non-overlapping populations of the peripheral olfactory system, while avoiding redundant multiple activations of the same ORN type. Field trapping results revealed that racemic 2,3-butanediol is a powerful novel attractant for P. interrupta
Assortative Mating in Fallow Deer Reduces the Strength of Sexual Selection
Background: Assortative mating can help explain how genetic variation for male quality is maintained even in highly polygynous species. Here, we present a longitudinal study examining how female and male ages, as well as male social dominance, affect assortative mating in fallow deer (Dama dama) over 10 years. Assortative mating could help explain the substantial proportion of females that do not mate with prime-aged, high ranking males, despite very high mating skew. We investigated the temporal pattern of female and male matings, and the relationship between female age and the age and dominance of their mates. Results: The peak of yearling female matings was four days later than the peak for older females. Younger females, and especially yearlings, mated with younger and lower-ranking males than older females. Similarly, young males and lowerranking males mated with younger females than older males and higher-ranking males. Furthermore, the timing of matings by young males coincided with the peak of yearling female matings, whereas the timing of older male matings (irrespective of rank) coincided with the peak of older female matings. Conclusions: Assortative mating, through a combination of indirect and/or direct female mate choice, can help explain th
- …