13 research outputs found

    Dynamics of Relativistic Interacting Gases : from a Kinetic to a Fluid Description

    Get PDF
    Starting from a microscopic approach, we develop a covariant formalism to describe a set of interacting gases. For that purpose, we model the collision term entering the Boltzmann equation for a class of interactions and then integrate this equation to obtain an effective macroscopic description. This formalism will be useful to study the cosmic microwave background non-perturbatively in inhomogeneous cosmologies. It should also be useful for the study of the dynamics of the early universe and can be applied, if one considers fluids of galaxies, to the study of structure formation.Comment: Latex file, 28 pages, accepted for publication in Class. Quant. Gra

    Electron-positron outflow from black holes

    Full text link
    Gamma-ray bursts (GRBs) appear as the brightest transient phenomena in the Universe. The nature of the central engine in GRBs is a missing link in the theory of fireballs to their stellar mass progenitors. Here it is shown that rotating black holes produce electron-positron outflow when brought into contact with a strong magnetic field. The outflow is produced by a coupling of the spin of the black hole to the orbit of the particles. For a nearly extreme Kerr black hole, particle outflow from an initial state of electrostatic equilibrium has a normalized isotropic emission of 5×1048(B/Bc)2(M/7M)2sin2θ\sim 5\times10^{48}(B/B_c)^2(M/7M_\odot)^2\sin^2\theta erg/s, where B is the external magnetic field strength, B_c=4.4 x 10^{13}G, and M is the mass of the black hole. This initial outflow has a half-opening angle θBc/3B\theta\ge\sqrt{B_c/3B}. A connection with fireballs in γ\gamma-ray bursts is given.Comment: 10 pages LaTe

    Casimir effect: running Newton constant or cosmological term

    Get PDF
    We argue that the instability of Euclidean Einstein gravity is an indication that the vacuum is non perturbative and contains a condensate of the metric tensor in a manner reminiscent of Yang-Mills theories. As a simple step toward the characterization of such a vacuum the value of the one-loop effective action is computed for Euclidean de Sitter spaces as a function of the curvature when the unstable conformal modes are held fixed. Two phases are found, one where the curvature is large and gravitons should be confined and another one which appears to be weakly coupled and tends to be flat. The induced cosmological constant is positive or negative in the strongly or weakly curved phase, respectively. The relevance of the Casimir effect in understanding the UV sensitivity of gravity is pointed out.Comment: Final, slightly extended version, to appear in Classical and Quantum Gravit

    A discrete nonetheless remarkable brick in de Sitter: the "massless minimally coupled field"

    Get PDF
    Over the last ten years interest in the physics of de Sitter spacetime has been growing very fast. Besides the supposed existence of a "de sitterian period" in inflation theories, the observational evidence of an acceleration of the universe expansion (interpreted as a positive cosmological constant or a "dark energy" or some form of "quintessence") has triggered a lot of attention in the physics community. A specific de sitterian field called "massless minimally coupled field" (mmc) plays a fundamental role in inflation models and in the construction of the de sitterian gravitational field. A covariant quantization of the mmc field, `a la Krein-Gupta-Bleuler was proposed in [1]. In this talk, we will review this construction and explain the relevance of such a field in the construction of a massless spin 2 field in de Sitter space-time.Comment: Proceedings of the XXVII Colloquium on Group Theoretical Methods in Physics, Yerevan, August 200

    Boson-fermion unification, superstrings, and Bohmian mechanics

    Full text link
    Bosonic and fermionic particle currents can be introduced in a more unified way, with the cost of introducing a preferred spacetime foliation. Such a unified treatment of bosons and fermions naturally emerges from an analogous superstring current, showing that the preferred spacetime foliation appears only at the level of effective field theory, not at the fundamental superstring level. The existence of the preferred spacetime foliation allows an objective definition of particles associated with quantum field theory in curved spacetime. Such an objective definition of particles makes the Bohmian interpretation of particle quantum mechanics more appealing. The superstring current allows a consistent Bohmian interpretation of superstrings themselves, including a Bohmian description of string creation and destruction in terms of string splitting. The Bohmian equations of motion and the corresponding probabilistic predictions are fully relativistic covariant and do not depend on the preferred foliation.Comment: 30 pages, 1 figure, revised, to appear in Found. Phy
    corecore