244 research outputs found

    On reliable control system designs

    Get PDF
    A mathematical model for use in the design of reliable multivariable control systems is discussed with special emphasis on actuator failures and necessary actuator redundancy levels. The model consists of a linear time invariant discrete time dynamical system. Configuration changes in the system dynamics are governed by a Markov chain that includes transition probabilities from one configuration state to another. The performance index is a standard quadratic cost functional, over an infinite time interval. The actual system configuration can be deduced with a one step delay. The calculation of the optimal control law requires the solution of a set of highly coupled Riccati-like matrix difference equations. Results can be used for off-line studies relating the open loop dynamics, required performance, actuator mean time to failure, and functional or identical actuator redundancy, with and without feedback gain reconfiguration strategies

    Integrated Science Investigation of the Sun (ISIS): Design of the Energetic Particle Investigation

    Get PDF
    The Integrated Science Investigation of the Sun (ISIS) is a complete science investigation on the Solar Probe Plus (SPP) mission, which flies to within nine solar radii of the Sun's surface. ISIS comprises a two-instrument suite to measure energetic particles over a very broad energy range, as well as coordinated management, science operations, data processing, and scientific analysis. Together, ISIS observations allow us to explore the mechanisms of energetic particles dynamics, including their: (1) Origins-defining the seed populations and physical conditions necessary for energetic particle acceleration; (2) Acceleration-determining the roles of shocks, reconnection, waves, and turbulence in accelerating energetic particles; and (3) Transport-revealing how energetic particles propagate from the corona out into the heliosphere. The two ISIS Energetic Particle Instruments measure lower (EPI-Lo) and higher (EPI-Hi) energy particles. EPI-Lo measures ions and ion composition from approx. 20 keV/nucleon-15 MeV total energy and electrons from approx.25-1000 keV. EPI-Hi measures ions from approx. 1-200 MeV/nucleon and electrons from approx. 0.5-6 MeV. EPI-Lo comprises 80 tiny apertures with fields-of-view (FOVs) that sample over nearly a complete hemisphere, while EPI-Hi combines three telescopes that together provide five large-FOV apertures. ISIS observes continuously inside of 0.25 AU with a high data collection rate and burst data (EPI-Lo) coordinated with the rest of the SPP payload; outside of 0.25 AU, ISIS runs in low-rate science mode whenever feasible to capture as complete a record as possible of the solar energetic particle environment and provide calibration and continuity for measurements closer in to the Sun. The ISIS Science Operations Center plans and executes commanding, receives and analyzes all ISIS data, and coordinates science observations and analyses with the rest of the SPP science investigations. Together, ISIS' unique observations on SPP will enable the discovery, untangling, and understanding of the important physical processes that govern energetic particles in the innermost regions of our heliosphere, for the first time. This paper summarizes the ISIS investigation at the time of the SPP mission Preliminary Design Review in January 2014

    Pulp, Vol. 2 No. 1

    Get PDF
    This is the second issue of Pulp.https://scholarworks.sfasu.edu/pulp/1001/thumbnail.jp

    Pulp, Vol. 2 No. 1

    Get PDF
    This is the second issue of Pulp.https://scholarworks.sfasu.edu/pulp/1001/thumbnail.jp

    Towards a Metric for the Assessment of Safety Critical Control Systems

    Get PDF
    There is a need for better integration of the fault tolerant and the control designs for safety critical systems such as aircraft. The dependability of current designs is assessed primarily with measures of the interconnection of fault tolerant components: the reliability function and the mean time to failure. These measures do not directly take into account the interaction of the fault tolerant components with the dynamics of the aircraft. In this paper, a first step to better integrate these designs is made. It is based on the observation that unstable systems are intrinsically unreliable and that a necessary condition for reliability is the existence of a stabilizing control law that depends on the interconnection of the working fault tolerant components. Since operation of a fault tolerant interconnection of digital computers in a harsh environment can result in transient errors, a methodology to analyze the mean square stability of the fault tolerant closed-loop system is presented. A definition for mean square stabilizability is then used to introduce the new dynamical system reliability concept. An example illustrates the effect on mean square stability of several fault tolerant design choices and illustrates possible dynamical system reliability plot

    Computer-aided detection system for clustered microcalcifications: comparison of performance on full-field digital mammograms and digitized screen-film mammograms

    Full text link
    We have developed a computer-aided detection (CAD) system to detect clustered microcalcifications automatically on full-field digital mammograms (FFDMs) and a CAD system for screen-film mammograms (SFMs). The two systems used the same computer vision algorithms but their false positive (FP) classifiers were trained separately with sample images of each modality. In this study, we compared the performance of the CAD systems for detection of clustered microcalcifications on pairs of FFDM and SFM obtained from the same patient. For case-based performance evaluation, the FFDM CAD system achieved detection sensitivities of 70%, 80% and 90% at an average FP cluster rate of 0.07, 0.16 and 0.63 per image, compared with an average FP cluster rate of 0.15, 0.38 and 2.02 per image for the SFM CAD system. The difference was statistically significant with the alternative free-response receiver operating characteristic (AFROC) analysis. When evaluated on data sets negative for microcalcification clusters, the average FP cluster rates of the FFDM CAD system were 0.04, 0.11 and 0.33 per image at detection sensitivity level of 70%, 80% and 90% compared with an average FP cluster rate of 0.08, 0.14 and 0.50 per image for the SFM CAD system. When evaluated for malignant cases only, the difference of the performance of the two CAD systems was not statistically significant with AFROC analysis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58099/2/pmb7_4_008.pd
    • …
    corecore