258 research outputs found

    A new and distinctive male-sterile, female-fertile desynaptic mutant in soybean (Glycine max).

    Get PDF
    A spontaneous desynaptic mutation, affecting only microsporogenesis and causing pollen sterility, has been detected in BR97-12986H, a line of the official Brazilian soybean breeding program. In this male-sterile, female-fertile mutant, up to metaphase II, the meiotic behavior was similar to that described for the st series of synaptic mutants previously reported in soybean. Besides many univalents, few or total absence of bivalents were recorded in diakinesis. Bivalents presented one or two terminal chiasmata, while univalents retained the sister chromatid cohesion. Bivalents and most univalents congregated at the equatorial metaphase plate, although univalents frequently migrated to the poles prematurely. Laggards resulting from delay in chiasmata terminalization were also recorded. Distinctly different in their behavior from st series soybean mutants, telophase I-originated micronuclei of different sizes organized their own spindle in the second division. This behavior contributed towards an increase in genome fractionation. Several microspores and microcytes of different sizes were recorded at the end of meiosis. Pollen sterility was estimated at 91.2 %. Segregation ratio for sterility in this line and its progenies reached 3:1. Allelism tests with st series of synaptic mutants are in progress. The importance of male-sterile, female-fertile mutations for soybean breeding programs is discussed

    Meiotic behavior of the Brazilian table grape cultivar Rubi (Vitis vinifera) with a high proportion of seedless berries

    Get PDF
    Meiotic behavior, pollen fertility and germination of the Brazilian table grape cv, Rubi (Vitis vinifera) were investigated; this cultivar produced different numbers of seedless berries when cultivated at two different sites: At site A vines produced a high proportion of seedless berries while at site B vines produced berries with a normal number of seeds. Cytological analysis of inflorescences collected from the two sites showed some meiotic abnormalities, the most common being related to chromosomal segregation and telophase micronuclei formation leading to microcyte formation in the tetrads, Cytoplasmic channels, bridges and tripolar spindles were also observed in some microsporocytes, Pollen fertility was high at both sites, approximately 96 % at site A and 98 % at site B, The rate of pollen germination was lower at site A than at site B, suggesting that the absence of seed formation is related to pollen germination rate.

    Alternative Splicing Changes Promoted by NOVA2 Upregulation in Endothelial Cells and Relevance for Gastric Cancer

    Get PDF
    Angiogenesis is crucial for cancer progression. While several anti-angiogenic drugs are in use for cancer treatment, their clinical benefits are unsatisfactory. Thus, a deeper understanding of the mechanisms sustaining cancer vessel growth is fundamental to identify novel biomarkers and therapeutic targets. Alternative splicing (AS) is an essential modifier of human proteome diversity. Nevertheless, AS contribution to tumor vasculature development is poorly known. The Neuro-Oncological Ventral Antigen 2 (NOVA2) is a critical AS regulator of angiogenesis and vascular development. NOVA2 is upregulated in tumor endothelial cells (ECs) of different cancers, thus representing a potential driver of tumor blood vessel aberrancies. Here, we identified novel AS transcripts generated upon NOVA2 upregulation in ECs, suggesting a pervasive role of NOVA2 in vascular biology. In addition, we report that NOVA2 is also upregulated in ECs of gastric cancer (GC), and its expression correlates with poor overall survival of GC patients. Finally, we found that the AS of the Rap Guanine Nucleotide Exchange Factor 6 (RapGEF6), a newly identified NOVA2 target, is altered in GC patients and associated with NOVA2 expression, tumor angiogenesis, and poor patient outcome. Our findings provide a better understanding of GC biology and suggest that AS might be exploited to identify novel biomarkers and therapeutics for anti-angiogenic GC treatments

    Chronic Replication Problems Impact Cell Morphology and Adhesion of DNA Ligase I Defective Cells

    Get PDF
    Moderate DNA damage resulting from metabolic activities or sub-lethal doses of exogenous insults may eventually lead to cancer onset. Human 46BR.1G1 cells bear a mutation in replicative DNA ligase I (LigI) which results in low levels of replication-dependent DNA damage. This replication stress elicits a constitutive phosphorylation of the ataxia telangiectasia mutated (ATM) checkpoint kinase that fails to arrest cell cycle progression or to activate apoptosis or cell senescence. Stable transfection of wild type LigI, as in 7A3 cells, prevents DNA damage and ATM activation. Here we show that parental 46BR.1G1 and 7A3 cells differ in important features such as cell morphology, adhesion and migration. Comparison of gene expression profiles in the two cell lines detects Bio-Functional categories consistent with the morphological and migration properties of LigI deficient cells. Interestingly, ATM inhibition makes 46BR.1G1 more similar to 7A3 cells for what concerns morphology, adhesion and expression of cell-cell adhesion receptors. These observations extend the influence of the DNA damage response checkpoint pathways and unveil a role for ATM kinase activity in modulating cell biology parameters relevant to cancer progression

    Solar Irradiance Forecasting Using Dynamic Ensemble Selection

    Get PDF
    Solar irradiance forecasting has been an essential topic in renewable energy generation. Forecasting is an important task because it can improve the planning and operation of photovoltaic systems, resulting in economic advantages. Traditionally, single models are employed in this task. However, issues regarding the selection of an inappropriate model, misspecification, or the presence of random fluctuations in the solar irradiance series can result in this approach underperforming. This paper proposes a heterogeneous ensemble dynamic selection model, named HetDS, to forecast solar irradiance. For each unseen test pattern, HetDS chooses the most suitable forecasting model based on a pool of seven well-known literature methods: ARIMA, support vector regression (SVR), multilayer perceptron neural network (MLP), extreme learning machine (ELM), deep belief network (DBN), random forest (RF), and gradient boosting (GB). The experimental evaluation was performed with four data sets of hourly solar irradiance measurements in Brazil. The proposed model attained an overall accuracy that is superior to the single models in terms of five well-known error metrics

    Lamin A/C truncation in dilated cardiomyopathy with conduction disease

    Get PDF
    BACKGROUND: Mutations in the gene encoding the nuclear membrane protein lamin A/C have been associated with at least 7 distinct diseases including autosomal dominant dilated cardiomyopathy with conduction system disease, autosomal dominant and recessive Emery Dreifuss Muscular Dystrophy, limb girdle muscular dystrophy type 1B, autosomal recessive type 2 Charcot Marie Tooth, mandibuloacral dysplasia, familial partial lipodystrophy and Hutchinson-Gilford progeria. METHODS: We used mutation detection to evaluate the lamin A/C gene in a 45 year-old woman with familial dilated cardiomyopathy and conduction system disease whose family has been well characterized for this phenotype [1]. RESULTS: DNA from the proband was analyzed, and a novel 2 base-pair deletion c.908_909delCT in LMNA was identified. CONCLUSIONS: Mutations in the gene encoding lamin A/C can lead to significant cardiac conduction system disease that can be successfully treated with pacemakers and/or defibrillators. Genetic screening can help assess risk for arrhythmia and need for device implantation

    Extreme Clonality in Lymphoblastoid Cell Lines with Implications for Allele Specific Expression Analyses

    Get PDF
    Lymphoblastoid cell lines (LCL) are being actively and extensively used to examine the expression of specific genes and genome-wide expression profiles, including allele specific expression assays. However, it has recently been shown that approximately 10% of human genes exhibit random patterns of monoallelic expression within single clones of LCLs. Consequently allelic imbalance studies could be significantly compromised if bulk populations of donor cells are clonal, or near clonal. Here, using X chromosome inactivation as a readout, we confirm and quantify widespread near monoclonality in two independent sets of cell lines. Consequently, we recommend where possible the use of bulk, non cell line, ex vivo cells for allele specific expression assays

    Investigation of KIT gene mutations in women with 46,XX spontaneous premature ovarian failure

    Get PDF
    BACKGROUND: Spontaneous premature ovarian failure presents most commonly with secondary amenorrhea. Young women with the disorder are infertile and experience the symptoms and sequelae of estrogen deficiency. The mechanisms that give rise to spontaneous premature ovarian failure are largely unknown, but many reports suggest a genetic mechanism in some cases. The small family size associated with infertility makes genetic linkage analysis studies extremely difficult. Another approach that has proven successful has been to examine candidate genes based on known genetic phenotypes in other species. Studies in mice have demonstrated that c-kit, a transmembrane tyrosine kinase receptor, plays a critical role in gametogenesis. Here we test the hypothesis that human KIT mutations might be a cause of spontaneous premature ovarian failure. METHODS AND RESULTS: We examined 42 women with spontaneous premature ovarian failure and found partial X monosomy in two of them. In the remaining 40 women with known 46,XX spontaneous premature ovarian failure we evaluated the entire coding region of the KIT gene. We did this using polymerase chain reaction based single-stranded conformational polymorphism analysis and DNA sequencing. We did not identify a single mutation that would alter the amino acid sequence of the c-KIT protein in any of 40 patients (upper 95% confidence limit is 7.2%). We found one silent mutation at codon 798 and two intronic polymorphisms. CONCLUSION: Mutations in the coding regions of the KIT gene appear not to be a common cause of 46,XX spontaneous premature ovarian failure in North American women

    Further Characterisation of the Molecular Signature of Quiescent and Activated Mouse Muscle Satellite Cells

    Get PDF
    Satellite cells are the resident stem cells of adult skeletal muscle. To date though, there is a paucity of native markers that can be used to easily identify quiescent satellite cells, with Pax7 probably being the best that is currently available. Here we have further characterized a number of recently described satellite cell markers, and also describe novel ones. Caveolin-1, integrin α7 and the calcitonin receptor proved reliable markers for quiescent satellite cells, being expressed by all satellite cells identified with Pax7. These three markers remained expressed as satellite cells were activated and underwent proliferation. The nuclear envelope proteins lamin A/C and emerin, mutations in which underlie Emery-Dreifuss muscular dystrophy, were also expressed in both quiescent and proliferating satellite cells. Conversely, Jagged-1, a Notch ligand, was not expressed in quiescent satellite cells but was induced upon activation. These findings further contribute to defining the molecular signature of muscle satellite cells
    • …
    corecore