44 research outputs found
Determining influence of landing technique in ground reaction forces
This paper provides and example of problem-based learning to assess effects from landing strategies during drop jumps on ground reaction forces calculated from a wearable accelerometer.
Problem Title: Determining influence of landing technique on ground reaction forces
Course Level: Undergraduate Introductory.
Learning Outcomes: Determine the effects of landing technique on ground reaction forces Calculate ground reaction force from body worn accelerometer data Discuss the relationship between force and time when the change in momentum is controlled Analyse and apply the data obtained to design a training progra
Biomehanički rad i koordinacijska struktura vožnje bicikla: pregled literature
In this review paper there three models to calculate mechanical work, the pattern of joint power during steady-state cycling and some theories regarding energy transfer through the joints and coordinative pattern analysis by joint mechanical work distribution will be briefly presented. Finally, there will be a report on the effects of workload, pedalling cadence and saddle height management on joint mechanical work. The first result that emerges from the management of the workload is that the positive mechanical work produced by the joints increases which is mostly related to the concentric muscle contraction. The contribution of hip and knee joints seems to be different from the ankle joint with changes in workload during cycling because the ankle joint muscles should be tuned to optimize stiffness and maximize the effective transmission of mechanical energy to the crank. When changing pedalling cadence, the authors have only agreed with the unchanged contribution of the ankle joint to the total mechanical work, while the hip and knee contribution results differ in the reported research. Lack of evidence in ankle joint function when the resistive force and pedalling cadence relationship are changed during fatigue as the mechanical energy transfer and stiffness function need further research. Controversial results have been reported in the analysis of joint contribution to the total mechanical work for different cycling expertise. Unfortunately, we cannot find conclusive research regarding the effects of saddle height on coordinative pattern mainly based on simultaneous analysis of joint moment distribution, joint kinematics and joint reaction forces.Uvod
Bicikl je prijevozno sredstvo iznimno korišteno u cijelom svijetu. Kada je riječ o potrošnji energije tijekom vožnje biciklom, može se primijetiti da su mehaničke karakteristike (geometrija) bicikla unapređivane tijekom vremena kako bi se smanjila potrošnja energije, poboljšala brzina prijenosa i, očigledno, povećala ekonomičnost kretanja. Mehanički rad tijekom vožnje biciklom trebalo bi također analizirati u kontekstu poboljšanja ekonomičnosti kretanja, i to analizom koordinacijskog obrasca pokreta. Na taj način, optimizacija mišićne funkcije predstavljena je kao učinkovito rješenje za poboljšanje ravnoteže između mehaničkog rada i metaboličke energije. Mi još uvijek ne razumijemo potpuno kontrolu generiranja mišićne sile iz središnjeg živčanog sustava (koordinacijski obrazac pokreta), no ipak se dosta toga zna. U skladu s navedenim, u ovom radu pokušali smo ukratko predstaviti tri modela izračunavanja mehaničkog rada, koncept generiranja snage u mišićima zglobova koji sudjeluju u okretanju pedala tijekom vožnje standardnom brzinom te neke teorije koje se odnose na transfer energije kroz zglobne sustave i analizu koordinacijskog obrasca promatranjem distribucije mehaničkog rada u zglobovima. Naposljetku, izvijestili smo o učincima opterećenja, ritma okretanja pedala i visine sjedala na mehanički rad zglobova. Da bismo prikupili članke vezane uz glavni problem ovog preglednog članka obavljeno je kompjutersko pretraživanje najkorištenijih baza podataka ili agregatora baza (MEDLINE, SCOPUS, ISI Web of Knowledge, EBSCO i GOOGLE SCHOOLAR), kao i brojnih pojedinačnih časopisa dostupnih u papirnatom obliku. Ključne riječi za pretraživanje relevantnih članaka bile su: mišićni mehanički rad, koordinacijski obrazac, snaga mišića u zglobovima, visina sjedalice, opterećenje i ritam okretanja pedala.
Modeli za izračunavanje mehaničkog rada: Na temelju promjena kinetičkih i potencijalnih energija svakog segmenta (unutarnji rad), model koji je predstavio Fenn (1930a,b) prilagođavao se godinama. Elftman (1939) je predstavio drugačiji pristup za izračunavanje mehaničkog rada u zglobovima koji je koristio rezultante zglobnih momenata i kutne brzine za izračunavanje snage svakog zgloba (kinetički model). Kompleksniji model izračunavanja mehaničkog rada kod okretanja pedala predstavili su Neptune i Van Den Bogert (1998) koji su u kompjutersku simulaciju gibanja uključili 28 mišića i njihove karakteristike sile-dužine-brzine. Ovaj model bio je naveden kao najosjetljiviji za objašnjavanje mišićne koordinacije tijekom okretanja pedala na biciklu, ponajviše stoga što analizira i mišićnu ko-kontrakciju.
Generiranje snage u mišićima zglobova koji sudjeluju u okretanju pedala tijekom vožnje standardnim ritmom: Za razliku od hodanja i trčanja, kod okretanja papučica bicikla veći se dio mehaničke energije, povezane s cikličnim kretnjama, dobiva iz koncentričnih mišićnih akcija donjih ekstremiteta. Rezultati također pokazuju da se u pedaliranju skladišti elastična energija, istina, manja nego u trčanju.
Transfer mehaničke energije kroz zglobne sustave i koordinacijski obrazac gibanja: Biciklizam, kao višezglobni zatvoreni kinetički lanac, razvija silu i prenosi snagu kroz kukove, koljena i gležnjeve. Broker i Gregor (1994) proveli su analizu transfera energije koristeći kinetički model mehaničke energije. Fregly i Zajac (1996) stvorili su simulacijski model koristeći samo kinematičke podatke. Neptune, Kautz i Zajac (2000) također su stvorili simulacijski model za analizu najvažnijih mišićnih grupa povezanih s cikličnim gibanjem u biciklizmu. Rezultati njihovih istraživanja otkrili su nam da mišići zgloba stopala (m. soleus, m. gastrocnemius i m. tibialis anterior) imaju vrlo važnu funkciju u transferu mehaničke energije ekstremiteta na papučicu bicikla, dok se mišići kvadricepsa i m. gluteus maximus povezuju s proizvodnjom mehaničke energije. Bolje razumijevanje funkcioniranje mišićnih grupa u biciklizmu omogućilo je i kvalitetnije objašnjavanje koordinacijskog obrasca kretanja pri samom okretanju pedala.
Učinci opterećenja na mehanički rad zglobova i koordinacijski obrazac kretanja: Prvi rezultat, posljedica upravljanja opterećenjem, jest da dolazi do povećanja pozitivnog mehaničkog rada koji proizvode mišići zglobova uključenih u okretanje papučica bicikla, što je povezano s koncentričnom mišićnom kontrakcijom. Čini se da je doprinos mišića kukova i koljena promjenama opterećenju tijekom vožnje bicikla različit od doprinosa mišića zgloba stopala, budući da mišići zgloba stopala moraju biti prilagođeni za optimizaciju čvrstoće i maksimiziranja učinkovitosti transmisije mehaničke energije na pedalu bicikla.
Učinak ritma okretanja papučica na mehanički rad zglobova i koordinacijski obrazac gibanja: Također je analiziran učinak ritma okretanja pedala na mehanički rad zglobova radi objašnjenja koordinacijskog obrasca gibanja tijekom vožnje biciklom. Pri jednakom izlazu snage, povećani unutarnji rad s povećanjem ritma okretanja pedala povezan je s negativnom snagom ekscentrične kontrakcije mišića koja se proizvodila zbog pokušaja kontroliranja primjene sile na papučice. Izabran je najprihvatljiviji ritam okretanja pedala koji će odgovarati omjeru između proizvodnje sile i brzine skraćivanja mišića. Dok male promjene u ritmu okretanja pedala (od 90 do 100 o/min) ne utječu na distribuciju mehaničkog rada, čini se da velike promjene ritma okretanja pedala ili mijenjaju ili ne utječu na doprinos kuka, koljena i gležnja na ukupni mehanički rad. Autori su se jedino složili oko činjenice da se doprinos mišića gležnja na ukupni mehanički rad ne mijenja s promjenama ritma okretanja pedala.
Učinak visine sjedala na mehanički rad zglobova i koordinacijski obrazac kretanja: Provedena su i istraživanja o upravljanju visinom sjedala bicikla radi utvrđivanja obrasca opterećenja zglobova pri različitim visinama, budući da je dokazano kako je većina ozljeda u biciklizmu povezana s lošim pozicioniranjem vozača na biciklu. Također je objavljen i podatak da distribucija snage zgloba nije pod utjecajem smanjenja visine sjedalice na biciklu. Nažalost, nije pronađeno nijedno istraživanje koje se bavilo ispitivanjem utjecaja visine sjedalice na distribuciju mehaničkog rada zglobova, a isto tako nisu pronađeni ni simulacijski modeli koji analiziraju generiranje mišićne sile pri različitim visinama sjedalice bicikla. Objavljeni su samo EMG podaci kojima su se pokušali objasniti i razumjeti koordinacijski obrasci kretanja tijekom vožnje bicikla na različitim visinama sjedalice.
Prijedlozi budućih istraživanja: U ovom preglednom članku predstavljeni su različiti modeli koji se primjenjuju za mjerenje mehaničkog rada u biciklizmu. Većina rezultata tih istraživanja bazirani su na kinetičkim modelima zbog toga što omogućuju usporedbu doprinosa zgloba kuka, koljena i gležnja ukupnom mehaničkom radu. Predstavljeni su i neki dokazi koji se temelje na proračunskim simulacijskim modelima, a koji predlažu povećanje pouzdanosti analize gibanja u biciklizmu pomoću procjene ko-kontrakcije mišića. Buduća istraživanja trebala bi se orijentirati na upotrebu proračunskih simulacijskih modela za analizu različitih opterećenja vožnje bicikla, ritma okretanja pedala, utjecaja visine sjedalice i sličnih znastvenih problema
Pedaling cadence effects on mechanical power and muscle contraction timing during cycling
A energia mecânica necessária para a pedalada no ciclismo depende de ações musculares concêntricas e excêntricas. Contudo, até o momento não se tem conhecimento de como variações na cadência de pedalada podem influenciar o tipo de ação muscular utilizada. O presente estudo investigou os efeitos de alterações na cadência nas ações musculares concêntricas e excêntricas durante a pedalada. A absorção e a produção de potência pelas articulações foram calculadas para monitorar possíveis repercussões das mudanças na cadência sobre a cinética articular. Vinte e um ciclistas participaram do estudo (VO2pico: 64,1 ± 5.0 ml/kg/min; volume de treinamento: 368,2 ± 69,5 km/semana). Na primeira sessão de avaliação, a potência máxima (POMAX) e a potência produzida relativa ao segundo limiar ventilatório (POLV2) foram determinadas durante teste incremental até a exaustão. Na segunda sessão, os ciclistas realizaram dois testes de dois minutos de duração a 70 e 90 rpm e carga constante (POLV2). A ativação de seis músculos, a força aplicada no pedal e a cinemática do membro inferior direito foram avaliadas. Um maior tempo de ativação foi observado em fase excêntrica para os músculos vasto medial (8%; p < 0,01) e bíceps femoral (20%; p = 0,04) a 70 rpm em relação a 90 rpm, além de maior tempo de ativação em fase concêntrica para o músculo vasto medial (10%; p = 0,04) a 90 rpm em relação a 70 rpm. Não se observou diferença nas potências articulares entre as cadências testadas. A não alteração da potência articular sugere uma tendência de conservação do padrão do movimento com a alteração da cadência de pedalada. A ativação excêntrica de músculos da articulação do joelho pode estar relacionada com o controle articular, transmissão de força e redução do custo energético.The mechanical energy required to propel the crank may depend on eccentric and concentric muscle actions. However, it is uncertain whether pedaling cadence would elicit changes in concentric and eccentric contributions. Therefore, the purpose of the present study was to investigate the effects of alterations in pedaling cadence on the eccentric and concentric muscle actions. Joint power production and absorption were calculated to assess potential effects from variations in pedaling cadence on joint kinetics. Twenty-one cyclists participated in this study (VO2pico: 64.1 ± 5.0 ml/kg/min; training volume: 368.2 ± 69.5 km/week). In their first session, maximal power output (POMAX) and power output related to the second ventilation threshold (POVT2) were determined during an incremental maximal cycling test to exhaustion. In their second session, cyclists performed two 2-min trials with workload from their POVT2 at two different cadences (70 and 90 rpm). Muscle activation of six muscles, pedal forces and lower limb joint kinematics were evaluated. Longer eccentric contraction at 70 rpm for vastus medialis (8%; p < 0.01) and biceps femoris (20%; p = 0.04) were observed compared to 90 rpm. Longer concentric contraction for vastus medialis muscle (10%; p = 0.04) at 90 rpm was observed compared to 70 rpm. There were no differences in joint power production and absorption among pedaling cadences. No alterations in joint power could indicate maintenance of movement when pedaling cadence is changed. Eccentric contractions from knee muscles could be related to joint control, force transmission and reduced energy cost
Triceps surae muscle architecture adaptations to eccentric training
Eccentric exercises have been used in physical training, injury prevention, and rehabilitation programs. The systematic use of eccentric training promotes specific morphological adaptations on skeletal muscles. However, synergistic muscles, such as the triceps surae components, might display different structural adaptations due to differences in architecture, function, and load sharing. Therefore, the purpose of this study was to determine the effects of an eccentric training program on the triceps surae (GM, gastrocnemius medialis; GL, gastrocnemius lateralis; and SO, soleus) muscle architecture. Methods: Twenty healthy male subjects (26 ± 4 years) underwent a 4-week control period followed by a 12-week eccentric training program. Muscle architecture [fascicle length (FL), pennation angle (PA), and muscle thickness (MT)] of GM, GL, and SO was evaluated every 4 weeks by ultrasonography. Results: Fascicle lengths (GM: 13.2%; GL: 8.8%; SO: 21%) and MT (GM: 14.9%; GL: 15.3%; SO: 19.1%) increased from pre- to post-training, whereas PAs remained similar. GM and SO FL and MT increased up to the 8th training week, whereas GL FL increased up to the 4th week. SO displayed the highest, and GL the smallest gains in FL post-training. Conclusion: All three synergistic plantar flexor muscles increased FL and MT with eccentric training. MT increased similarly among the synergistic muscles, while the muscle with the shortest FL at baseline (SO) showed the greatest increase in FL
Aplicação de força no pedal em prova de ciclismo 40 km contra-relógio simulada: estudo preliminar
O objetivo deste estudo foi analisar o comportamento das forças aplicadas no pedal durante uma prova de ciclismo 40 km contra-relógio simulada. Avaliou-se um triatleta de nível internacional utilizando-se uma bicicleta modelo estrada acoplada a um ciclossimulador eletromagnético. O protocolo consistiu em completar 40 km no menor tempo possível, utilizando estratégia de livre escolha, incluindo cadência e relação de marchas preferida. Utilizou-se um pedal direito instrumentado com "strain gauges" capaz de mensurar as componentes normal e tangencial da força aplicada no mesmo. Foi possível calcular a força efetiva (componente perpendicular ao pé-de-vela, chamada de FE), a partir das forças registradas pelo pedal. Durante todo o teste, monitorou-se o consumo de oxigênio (VO2), freqüência cardíaca (FC), potência e velocidade. Durante a prova simulada observou-se um aumento do esforço do triatleta a partir da análise do comportamento do VO2 e da FC, bem como pelo aumento da potência e da velocidade. A magnitude das forças normal e tangencial ao pedal apresentou redução no decorrer da prova, enquanto que a FE aumentou durante a fase de recuperação. Provavelmente o triatleta mudou o direcionamento das forças ao longo do teste na tentativa de otimizar as mesmas, influenciando dessa forma a técnica de pedalada. A estratégia adotada pelo triatleta parece ter contribuído para aumentar a efetividade da pedalada.The purpose of this study was to analyze the pedal forces during a simulated cycling 40 km time-trial. One experienced triathlete was evaluated using a road bike mounted on a magnetic cycle simulator. The self-preferred cadence and gear was adopted to complete the 40 km in less time possible. The right regular pedal was replaced by an instrumented pedal to record the normal and tangential components of force applied on it. The effective force (perpendicular component to the crank) was calculated from normal and tangential forces. Oxygen uptake, heart rate, power output and speed were registered. During the time-trial the triathlete.s effort increased and this influenced the oxygen uptake and heart rate. The forces magnitude showed a little decreased by the end of the test while the effective force increased on the second half of the recovery phase. Probably the triathlete changed the direction of the forces during the 40 km trial to try to optimize the application of force thus influencing the pedaling technique. The strategy adopted by the triathlete caused a positive change in the pedaling effectiveness
BIOMECHANICAL AND PHYSICAL PROFILE COMPARISON IN MILITARIES WITH AND WITHOUT MUSCULOSKELETAL INJURIES: A PRELIMINARY STUDY
This study compared limb strength, body composition, cardiorespiratory fitness and vertical jump performance in military staff with and without prior musculoskeletal injures. Thirty male military personnel enrolled in a physical education undergraduate program participated in this study. A survey covering history of the last two years of musculoskeletal lower limb injuries was sent to participants, who were separated into groups: injured (IG; n=16) and uninjured (NIG; n=14). Participants performed a sit and reach flexibility test, body composition, 12-min Cooper running test, vertical jump performance and back squat in a smith machine on five different days. Participants from the IG presented reduced strength and vertical jump performance compared to the NIG. No differences were observed in body composition, or cardiorespiratory fitness between groups
ISBS 2018 AUCKLAND CONFERENCE SPRINZ-HPSNZ-AUT MILLENNIUM APPLIED PROGRAMME
An interactive afternoon of sessions delivered by High Performance Sport New Zealand (HPSNZ) and AUT SPRINZ Biomechanists, Performance Analysts and other biomechanics relevant sport facing practitioners. The 11 sessions are at AUT Millennium (AUTM), which is a satellite site of AUT University and the Auckland training hub for many HPSNZ supported sports such as athletics, sailing, and swimming. These sports and others (cycling, rowing, snow sports etc.) will be represented in the line-up. The applied sessions involve practical demonstrations of aspects of analysis and/or tools used to deliver in the field to directly positively impact athletes performances on the world stage. Following these engaging sessions there will be tasting of New Zealand wine, allowing for further discussion and networking. Sir Graeme Avery will be acknowledged for his contribution to sport science.
Mike Stanley is AUT Millennium Chief Executive & NZ Olympic Committee President will explain the partners in the facility. AUT Millennium is a charitable trust established to help New Zealanders live longer and healthier lives, and to enjoy and excel in sport through the provision of world-class facilities, services, research and education. Founded in 2002 as Millennium Institute of Sport and Health (MISH) by Sir Stephen Tindall and Sir Graeme Avery as a premium health and fitness facility for both athletes and the public alike. Partnered with AUT University in 2009, forming AUT Millennium, to expand research and education in the sporting sector.
Professor Barry Wilson is an Adjunct Professor with SPRINZ at Auckland University of Technology and will be outlining the research and student opportunities. Martin Dowson is the General Manager Athlete Performance Support at High Performance Sport New Zealand and has overall responsibility for the programme. Simon Briscoe, AUT Millennium Applied Session Coordinator, is the head of the Performance and Technique Analysis discipline within HPSNZ. Simon is coordinating the applied sessions along with technical support from Dr Allan Carman, Research Fellow, AUT SPRINZ.
Jodi Cossor and Matt Ingram will provide a demonstration of a multidisciplinary approach driven by biomechanical analysis for Paralympic swimmers. Justin Evans and Sarah-Kate Millar will provide a practical session assessing the athletes rowing stroke to assist the coach on technical changes. This session will demonstrate various rowing traits and how the biomechanist and coach can work together to optimise boat speed. Mike Schofield and Kim Hébert-Losier will provide a session looking at shotput and the evidence based approach to coaching. Dr Craig Harrison and Professor John Cronin will provide examples from the AUTM Athlete Development programme. Kim Simperingham and Jamie Douglas who work with high performance rugby athletes will outline sprinting mechanics in practice. Dr Bruce Hamilton, Fiona Mather, Justin Ralph and Rone Thompson will demonstrate the approach of HPSNZ and Cycling NZ performance health teams in the use of some specific tools for prevention of injury and optimisation of performance. Kelly Sheerin, Denny Wells and Associate Professor Thor Besier will provide examples of using IMU and motion capture methods for running and basketball biomechanics research, education and service. Dr Rodrigo Bini and Associate Professor Andrew Kilding will show how linking of biomechanics and physiology improves injury prevention and performance enhancement. Robert Tang, Andre de Jong and Farhan Tinwala discuss select projects developed by Goldmine, HPSNZ’s in-house engineering team, and how these innovations have enabled unprecedented levels of biomechanics feedback. Cameron Ross and Paul McAlpine demonstrate the technology being used at the Snow Sports NZ training centre in Cadrona to enhance load monitoring of athletes. This application allows greater insight into training performances and biomechanical loads than has been previously possible in the training environment.
AUT Millennium tour guides are coordinated by Josh McGeown and include Enora Le Flao, Dustin Oranchuk, Erika Ikeda, Jono Neville, Aaron Uthoff, Andrew Pichardo, Farhan Tinwala, Shelley Diewald, Renata Bastos Gottgtroy, Jessica Yeoman, Casey Watkins, Eric Harbour, Anja Zoellner, Alyssa Joy Spence, Victor Lopez Jr, and Albert Chang
Fatigue evaluation by means of the analisys of resultant joint moments
O processo de instalação da fadiga implica na mudança do padrão coordenativo durante a pedalada. Desta forma a análise da contribuição de cada articulação do membro inferior para o somatório absoluto dos momentos articulares se faz necessária para o melhor entendimento dos mecanismos relacionados aos efeitos do processo de instalação da fadiga sobre o padrão coordenativo no ciclismo. O objetivo deste estudo foi comparar a contribuição das articulações do quadril, joelho e tornozelo para o somatório absoluto dos momentos articulares resultantes, assim como a força resultante e a cinemática destas articulações, ao longo do tempo, nos modelos experimentais de carga constante e de carga incremental até a exaustão. Foram avaliados onze ciclistas de estrada da categoria elite, que participam de competições regionais (Texas) e nacionais (Estados Unidos) do sexo masculino (idade 31 ± 7 anos; consumo máximo de oxigênio 62,84 ± 4,86 ml.kg-1.min-1; potência máxima 407 ± 37 W). Onze ciclistas foram avaliados no primeiro dia de avaliação, este constituindo um teste de ciclismo máximo com incrementos de carga a cada dois minutos (75, 90 e 100% da PO máxima estimada, respectivamente). No segundo dia de avaliação, dez ciclistas foram avaliados em um protocolo de ciclismo com carga entre 90 e 100% da PO máxima, definida no primeiro dia. Em ambos os testes foram mensurados o consumo de oxigênio (VO2), a força aplicada no pedal direito e a cinemática do membro inferior direito dos ciclistas. Se utilizou um modelo bidimensional dos segmentos da coxa, perna e pé, a fim de calcular as forças e momentos resultantes nas articulações do quadril, joelho e tornozelo, por meio da técnica da dinâmica inversa. Foram analisados o somatório absoluto dos momentos articulares resultantes (SMA), o percentual de contribuição de cada articulação para o SMA, a força resultante e a cinemática das articulações do quadril, joelho e tornozelo nos três estágios do teste incremental (75, 90 e 100% da PO máxima) e em quatro instantes do teste de carga constante (10, 40, 70 e 90% do tempo total do teste). No primeiro dia de avaliação (estudo 1) foi observada redução significativa da cadência de pedalada no estágio com carga a 100% da POMáx, comparado aos estágios 75% e 90% da POMáx. Observou-se ainda aumento significativo da contribuição do joelho para o SMA, no estágio a 100% da POMáx, comparado aos estágios 75% e 90% da POMáx, devido ao aumento significativo do momento resultante na articulação do joelho, no estágio a 100% da POMáx, em relação aos estágios com carga a 75 e 90% da POMáx. A força resultante nas três articulações analisadas apresentou aumento significativo ao longo do teste de carga incremental. Para as variáveis cinemáticas, foi observada redução significativa no valor médio do ângulo do tornozelo, assim como aumento significativo na sua amplitude de movimento no estágio 100% da POMáx. Para a articulação do quadril, foi observado aumento no valor médio do ângulo articular, assim como redução na sua amplitude de movimento no estágio com carga a 100% da POMáx. No segundo dia de avaliação (estudo 2) foi observada redução significativa da cadência de pedalada nos instantes 70 e 90% do tempo total de teste, comparados aos instantes 10 e 40% do tempo total. Esta foi acompanhada por redução da contribuição da articulação do tornozelo para o SMA, no instante 90% do tempo total comparado aos instantes 40 e 70% do tempo total do teste, devido ao aumento significativo do momento resultante na articulação do joelho no instante 90% comparado aos instantes 40 e 70% do tempo total e do quadril no instante 90% comparado aos instantes 10, 40 e 70% do tempo total. Se observou aumento na força resultante nas três articulações analisadas, assim como alterações na cinemática das mesmas ao longo do teste (redução do ângulo médio da articulação do tornozelo, com aumento da amplitude de movimento, aumento significativo do ângulo médio das articulações do joelho e do quadril). Os resultados observados indicaram alterações no padrão coordenativo dos ciclistas devido ao processo de instalação da fadiga, estes ocorrendo de forma distinta nos dois protocolos avaliados. As estratégias de controle das articulações durante a pedalada, parecem não ser características inerentes do gesto motor, sendo estas adaptáveis às demandas aumentadas nas articulações devido às alterações na cadência de pedalada e no processo de instalação da fadiga.Fatigue process has been proposed to change the coordinative pattern; therefore, the analysis of the contribution of each joint to the average absolute joint moment should improve the understanding of the fatigue effects on the coordinative pattern during cycling. The aim of the present study was to compare the contribution of each joint to the average absolute joint moment, as the resultant force and kinematics of the hip, knee, and ankle joints, in an incremental and in a constant workload cycling test to exhaustion. Eleven male road cyclists competing at regional (Texas) and national (United States) levels (age: 31 ± 7 years; maximal oxygen uptake 62.84 ± 4.86 ml.kg-1.min-1; maximal power output 407 ± 37 W) volunteered to participate in the study. Eleven cyclists were submitted to an incremental maximal cycling test with two minutos of workload increment (75, 90 e 100% of POMax, respectively). On the second day, ten cyclists were evaluated in a constant cycling test, in which the workload was set between 90 and 100% of POMax, as defined on the first evaluation day. During both days the oxygen uptake (VO2), right pedal forces and lower limb kinematics were acquired. A bidimensional model of the thigh, leg and foot segments allowed to calculate the resultant forces and moments at the hip, knee and ankle joints by means of inverse dynamics. The average absolute joint moment (SMA), the contribution of each joint to the SMA, the resultant force and kinematics of the hip, knee and ankle joints were analyzed on three stages of incremental cycling test (75, 90 e 100% of POMax), and on four instants of constant workload cycling test (10, 40, 70 and 90% of total time). On the first evaluation day (study 1), a significant decrease of pedaling cadence was observed at the 100% of POMax stage, compared with 75% and 90% of POMax stages. There was also a significant increase of knee joint contribution to the SMA at 100% of POMax stage, compared with 75% and 90% of POMax stages, due to a significant increase of knee joint absolute moment at 100% of POMax stage, compared with 75% and 90% of POMax stages. The resultant joint force on the three joints have significantly increased, while joint kinematics has changed with the increase of workload (reduced mean ankle angle, with increased ankle range of motion) For hip joint, there was a significant increase of mean angle, with reduced range of motion at 100% of POMax. On the second evaluation day (study 2) a significant reduction of pedaling cadence was observed at the 70% and 90% of total time, compared with 10% and 40% of total time. This result was followed by a significant reduction of the ankle joint contribution to the SMA at the 90% of total time, compared with 40% and 70% of total time, due to a significant increase of knee resultant joint moment on the 90% of total time, compared with 40% and 70% of total time, and for the hip resultant joint moment at the 90% of total time, compared with 10, 40, and 70% of total time. There was also a significant increase of the resultant joint force and a change on kinematics of the three joints throught the test (reduced mean ankle angle, with increased range of motion, and a significant increase of the mean value of knee and hip angles). The results indicated that the coordinative pattern changed with fatigue, with discrete effects in each cycling test. The strategies of joint control during cycling should not be an innate robust motor behavior, but these strategies should be adaptable to higher demands on the joints, as significant changes on pedaling cadence and fatigue