81 research outputs found

    Methicillin-Resistant Staphylococcus aureus USA300 Clone in Long-Term Care Facility

    Get PDF
    We performed a longitudinal analysis of 661 methicillin-resistant Staphylococcus aureus (MRSA) isolates obtained from patients in a long-term care facility. USA300 clone increased from 11.3% of all MRSA isolates in 2002 to 64.0% in 2006 (p<0.0001) and was mostly recovered from skin or skin structures (64.3% vs. 27.0% for non-USA300 MRSA; p<0.0001)

    Genetic Diversity of Arginine Catabolic Mobile Element in Staphylococcus epidermidis

    Get PDF
    BACKGROUND:The methicillin-resistant Staphylococcus aureus clone USA300 contains a novel mobile genetic element, arginine catabolic mobile element (ACME), that contributes to its enhanced capacity to grow and survive within the host. Although ACME appears to have been transferred into USA300 from S. epidermidis, the genetic diversity of ACME in the latter species remains poorly characterized. METHODOLOGY/PRINCIPAL FINDINGS:To assess the prevalence and genetic diversity of ACME, 127 geographically diverse S. epidermidis isolates representing 86 different multilocus sequence types (STs) were characterized. ACME was found in 51% (65/127) of S. epidermidis isolates. The vast majority (57/65) of ACME-containing isolates belonged to the predominant S. epidermidis clonal complex CC2. ACME was often found in association with different allotypes of staphylococcal chromosome cassette mec (SCCmec) which also encodes the recombinase function that facilities mobilization ACME from the S. epidermidis chromosome. Restriction fragment length polymorphism, PCR scanning and DNA sequencing allowed for identification of 39 distinct ACME genetic variants that differ from one another in gene content, thereby revealing a hitherto uncharacterized genetic diversity within ACME. All but one ACME variants were represented by a single S. epidermidis isolate; the singular variant, termed ACME-I.02, was found in 27 isolates, all of which belonged to the CC2 lineage. An evolutionary model constructed based on the eBURST algorithm revealed that ACME-I.02 was acquired at least on 15 different occasions by strains belonging to the CC2 lineage. CONCLUSIONS/SIGNIFICANCE:ACME-I.02 in diverse S. epidermidis isolates were nearly identical in sequence to the prototypical ACME found in USA300 MRSA clone, providing further evidence for the interspecies transfer of ACME from S. epidermidis into USA300

    Panton-Valentine Leukocidin Does Play a Role in the Early Stage of Staphylococcus aureus Skin Infections: A Rabbit Model

    Get PDF
    Despite epidemiological data linking necrotizing skin infections with the production of Panton-Valentine leukocidin (PVL), the contribution of this toxin to the virulence of S. aureus has been highly discussed as a result of inconclusive results of in vivo studies. However, the majority of these results originate from experiments using mice, an animal species which neutrophils - the major target cells for PVL - are highly insensitive to the action of this leukocidin. In contrast, the rabbit neutrophils have been shown to be as sensitive to PVL action as human cells, making the rabbit a better experimental animal to explore the PVL role. In this study we examined whether PVL contributes to S. aureus pathogenicity by means of a rabbit skin infection model. The rabbits were injected intradermally with 108 cfu of either a PVL positive community-associated methicillin-resistant S. aureus isolate, its isogenic PVL knockout or a PVL complemented knockout strain, and the development of skin lesions was observed. While all strains induced skin infection, the wild type strain produced larger lesions and a higher degree of skin necrosis compared to the PVL knockout strain in the first week after the infection. The PVL expression in the rabbits was indirectly confirmed by a raise in the serum titer of anti-LukS-PV antibodies observed only in the rabbits infected with PVL positive strains. These results indicate that the rabbit model is more suitable for studying the role of PVL in staphylococcal diseases than other animal models. Further, they support the epidemiological link between PVL producing S. aureus strains and necrotizing skin infections

    Contribution of Panton-Valentine Leukocidin in Community-Associated Methicillin-Resistant Staphylococcus aureus Pathogenesis

    Get PDF
    Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) strains typically carry genes encoding Panton-Valentine leukocidin (PVL). We used wild-type parental and isogenic PVL-deletion (Δpvl) strains of USA300 (LAC and SF8300) and USA400 (MW2) to test whether PVL alters global gene regulatory networks and contributes to pathogenesis of bacteremia, a hallmark feature of invasive staphylococcal disease. Microarray and proteomic analyses revealed that PVL does not alter gene or protein expression, thereby demonstrating that any contribution of PVL to CA-MRSA pathogenesis is not mediated through interference of global gene regulatory networks. Inasmuch as a direct role for PVL in CA-MRSA pathogenesis remains to be determined, we developed a rabbit bacteremia model of CA-MRSA infection to evaluate the effects of PVL. Following experimental infection of rabbits, an animal species whose granulocytes are more sensitive to the effects of PVL compared with the mouse, we found a contribution of PVL to pathogenesis over the time course of bacteremia. At 24 and 48 hours post infection, PVL appears to play a modest, but measurable role in pathogenesis during the early stages of bacteremic seeding of the kidney, the target organ from which bacteria were not cleared. However, the early survival advantage of this USA300 strain conferred by PVL was lost by 72 hours post infection. These data are consistent with the clinical presentation of rapid-onset, fulminant infection that has been associated with PVL-positive CA-MRSA strains. Taken together, our data indicate a modest and transient positive effect of PVL in the acute phase of bacteremia, thereby providing evidence that PVL contributes to CA-MRSA pathogenesis

    Methicillin-Susceptible Staphylococcus aureus as a Predominantly Healthcare-Associated Pathogen: A Possible Reversal of Roles?

    Get PDF
    Methicillin-resistant Staphylococcus aureus (MRSA) strains have become common causes of skin and soft tissue infections (SSTI) among previously healthy people, a role of methicillin-susceptible (MSSA) isolates before the mid-1990s. We hypothesized that, as MRSA infections became more common among S. aureus infections in the community, perhaps MSSA infections had become more important as a cause of healthcare-associated infection.We compared patients, including children and adults, with MRSA and MSSA infections at the University of Chicago Medical Center (UCMC) from all clinical units from July 1, 2004-June 30, 2005; we also compared the genotypes of the MRSA and MSSA infecting bacterial strains.Compared with MRSA patients, MSSA patients were more likely on bivariate analysis to have bacteremia, endocarditis, or sepsis (p = 0.03), to be an adult (p = 0.005), to be in the intensive care unit (21.9% vs. 15.6%) or another inpatient unit (45.6% vs. 40.7%) at the time of culture. MRSA (346/545) and MSSA (76/114) patients did not differ significantly in the proportion classified as HA-S. aureus by the CDC CA-MRSA definition (p = 0.5). The genetic backgrounds of MRSA and MSSA multilocus sequence type (ST) 1, ST5, ST8, ST30, and ST59 comprised in combination 94.5% of MRSA isolates and 50.9% of MSSA isolates. By logistic regression, being cared for in the Emergency Department (OR 4.6, CI 1.5-14.0, p = 0.008) was associated with MRSA infection.Patients with MSSA at UCMC have characteristics consistent with a health-care-associated infection more often than do patients with MRSA; a possible role reversal has occurred for MSSA and MRSA strains. Clinical MSSA and MRSA strains shared genotype backgrounds

    Staphylococcal Toxic Shock Syndrome 2000–2006: Epidemiology, Clinical Features, and Molecular Characteristics

    Get PDF
    Circulating strains of Staphylococcus aureus (SA) have changed in the last 30 years including the emergence of community-associated methicillin-resistant SA (MRSA). A report suggested staphylococcal toxic shock syndrome (TSS) was increasing over 2000-2003. The last population-based assessment of TSS was 1986.Population-based active surveillance for TSS meeting the CDC definition using ICD-9 codes was conducted in the Minneapolis-St. Paul area (population 2,642,056) from 2000-2006. Medical records of potential cases were reviewed for case criteria, antimicrobial susceptibility, risk factors, and outcome. Superantigen PCR testing and PFGE were performed on available isolates from probable and confirmed cases.Of 7,491 hospitalizations that received one of the ICD-9 study codes, 61 TSS cases (33 menstrual, 28 non-menstrual) were identified. The average annual incidence per 100,000 of all, menstrual, and non-menstrual TSS was 0.52 (95% CI, 0.32-0.77), 0.69 (0.39-1.16), and 0.32 (0.12-0.67), respectively. Women 13-24 years had the highest incidence at 1.41 (0.63-2.61). No increase in incidence was observed from 2000-2006. MRSA was isolated in 1 menstrual and 3 non-menstrual cases (7% of TSS cases); 1 isolate was USA400. The superantigen gene tst-1 was identified in 20 (80%) of isolates and was more common in menstrual compared to non-menstrual isolates (89% vs. 50%, p = 0.07). Superantigen genes sea, seb and sec were found more frequently among non-menstrual compared to menstrual isolates [100% vs 25% (p = 0.4), 60% vs 0% (p<0.01), and 25% vs 13% (p = 0.5), respectively].TSS incidence remained stable across our surveillance period of 2000-2006 and compared to past population-based estimates in the 1980s. MRSA accounted for a small percentage of TSS cases. tst-1 continues to be the superantigen associated with the majority of menstrual cases. The CDC case definition identifies the most severe cases and has been consistently used but likely results in a substantial underestimation of the total TSS disease burden

    Global Changes in Staphylococcus aureus Gene Expression in Human Blood

    Get PDF
    Staphylococcus aureus is a leading cause of bloodstream infections worldwide. In the United States, many of these infections are caused by a strain known as USA300. Although progress has been made, our understanding of the S. aureus molecules that promote survival in human blood and ultimately facilitate metastases is incomplete. To that end, we analyzed the USA300 transcriptome during culture in human blood, human serum, and trypticase soy broth (TSB), a standard laboratory culture media. Notably, genes encoding several cytolytic toxins were up-regulated in human blood over time, and hlgA, hlgB, and hlgC (encoding gamma-hemolysin subunits HlgA, HlgB, and HlgC) were among the most highly up-regulated genes at all time points. Compared to culture supernatants from a wild-type USA300 strain (LAC), those derived from an isogenic hlgABC-deletion strain (LACΔhlgABC) had significantly reduced capacity to form pores in human neutrophils and ultimately cause neutrophil lysis. Moreover, LACΔhlgABC had modestly reduced ability to cause mortality in a mouse bacteremia model. On the other hand, wild-type and LACΔhlgABC strains caused virtually identical abscesses in a mouse skin infection model, and bacterial survival and neutrophil lysis after phagocytosis in vitro was similar between these strains. Comparison of the cytolytic capacity of culture supernatants from wild-type and isogenic deletion strains lacking hlgABC, lukS/F-PV (encoding PVL), and/or lukDE revealed functional redundancy among two-component leukotoxins in vitro. These findings, along with a requirement of specific growth conditions for leukotoxin expression, may explain the apparent limited contribution of any single two-component leukotoxin to USA300 immune evasion and virulence

    TextANIMAR: Text-based 3D Animal Fine-Grained Retrieval

    Full text link
    3D object retrieval is an important yet challenging task, which has drawn more and more attention in recent years. While existing approaches have made strides in addressing this issue, they are often limited to restricted settings such as image and sketch queries, which are often unfriendly interactions for common users. In order to overcome these limitations, this paper presents a novel SHREC challenge track focusing on text-based fine-grained retrieval of 3D animal models. Unlike previous SHREC challenge tracks, the proposed task is considerably more challenging, requiring participants to develop innovative approaches to tackle the problem of text-based retrieval. Despite the increased difficulty, we believe that this task has the potential to drive useful applications in practice and facilitate more intuitive interactions with 3D objects. Five groups participated in our competition, submitting a total of 114 runs. While the results obtained in our competition are satisfactory, we note that the challenges presented by this task are far from being fully solved. As such, we provide insights into potential areas for future research and improvements. We believe that we can help push the boundaries of 3D object retrieval and facilitate more user-friendly interactions via vision-language technologies.Comment: arXiv admin note: text overlap with arXiv:2304.0573

    Staphylococcus aureus Panton-Valentine Leukocidin Contributes to Inflammation and Muscle Tissue Injury

    Get PDF
    Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) threatens public health worldwide, and epidemiologic data suggest that the Panton-Valentine Leukocidin (PVL) expressed by most CA-MRSA strains could contribute to severe human infections, particularly in young and immunocompetent hosts. PVL is proposed to induce cytolysis or apoptosis of phagocytes. However, recent comparisons of isogenic CA-MRSA strains with or without PVL have revealed no differences in human PMN cytolytic activity. Furthermore, many of the mouse studies performed to date have failed to demonstrate a virulence role for PVL, thereby provoking the question: does PVL have a mechanistic role in human infection? In this report, we evaluated the contribution of PVL to severe skin and soft tissue infection. We generated PVL mutants in CA-MRSA strains isolated from patients with necrotizing fasciitis and used these tools to evaluate the pathogenic role of PVL in vivo. In a model of necrotizing soft tissue infection, we found PVL caused significant damage of muscle but not the skin. Muscle injury was linked to induction of pro-inflammatory chemokines KC, MIP-2, and RANTES, and recruitment of neutrophils. Tissue damage was most prominent in young mice and in those strains of mice that more effectively cleared S. aureus, and was not significant in older mice and mouse strains that had a more limited immune response to the pathogen. PVL mediated injury could be blocked by pretreatment with anti-PVL antibodies. Our data provide new insights into CA-MRSA pathogenesis, epidemiology and therapeutics. PVL could contribute to the increased incidence of myositis in CA-MRSA infection, and the toxin could mediate tissue injury by mechanisms other than direct killing of phagocytes

    Development and validation of a rabbit model of Pseudomonas aeruginosa non-ventilated pneumonia for preclinical drug development

    Get PDF
    BackgroundNew drugs targeting antimicrobial resistant pathogens, including Pseudomonas aeruginosa, have been challenging to evaluate in clinical trials, particularly for the non-ventilated hospital-acquired pneumonia and ventilator-associated pneumonia indications. Development of new antibacterial drugs is facilitated by preclinical animal models that could predict clinical efficacy in patients with these infections.MethodsWe report here an FDA-funded study to develop a rabbit model of non-ventilated pneumonia with Pseudomonas aeruginosa by determining the extent to which the natural history of animal disease reproduced human pathophysiology and conducting validation studies to evaluate whether humanized dosing regimens of two antibiotics, meropenem and tobramycin, can halt or reverse disease progression.ResultsIn a rabbit model of non-ventilated pneumonia, endobronchial challenge with live P. aeruginosa strain 6206, but not with UV-killed Pa6206, caused acute respiratory distress syndrome, as evidenced by acute lung inflammation, pulmonary edema, hemorrhage, severe hypoxemia, hyperlactatemia, neutropenia, thrombocytopenia, and hypoglycemia, which preceded respiratory failure and death. Pa6206 increased &gt;100-fold in the lungs and then disseminated from there to infect distal organs, including spleen and kidneys. At 5 h post-infection, 67% of Pa6206-challenged rabbits had PaO2 &lt;60 mmHg, corresponding to a clinical cut-off when oxygen therapy would be required. When administered at 5 h post-infection, humanized dosing regimens of tobramycin and meropenem reduced mortality to 17-33%, compared to 100% for saline-treated rabbits (P&lt;0.001 by log-rank tests). For meropenem which exhibits time-dependent bactericidal activity, rabbits treated with a humanized meropenem dosing regimen of 80 mg/kg q2h for 24 h achieved 100% T&gt;MIC, resulting in 75% microbiological clearance rate of Pa6206 from the lungs. For tobramycin which exhibits concentration-dependent killing, rabbits treated with a humanized tobramycin dosing regimen of 8 mg/kg q8h for 24 h achieved Cmax/MIC of 9.8 ± 1.4 at 60 min post-dose, resulting in 50% lung microbiological clearance rate. In contrast, rabbits treated with a single tobramycin dose of 2.5 mg/kg had Cmax/MIC of 7.8 ± 0.8 and 8% (1/12) microbiological clearance rate, indicating that this rabbit model can detect dose-response effects.ConclusionThe rabbit model may be used to help predict clinical efficacy of new antibacterial drugs for the treatment of non-ventilated P. aeruginosa pneumonia
    • …
    corecore