3,767 research outputs found

    Lower-hybrid waves generated by anomalous Doppler resonance in auroral plasmas

    Get PDF
    This paper describes sonic aspects of lower-hybrid wave activity in space plasmas. Lower-hybrid waves are particularly important since they can transfer energy efficiently between electrons and ions in a collisionless magnetized plasma. We consider the 'fan' or anomalous Doppler resonance instability driven by energetic electron tails and show that it is responsible for the generation of lower-hybrid waves. We also demonstrate that observations of their intensity are sufficient to drive the modulational instability.Peer reviewe

    A describing function for resonantly commutated H-bridge inverters

    Get PDF
    Abstract—The paper presents the derivation of a describing function to model the dynamic behavior of a metal oxide semiconductor field effect transistor-based, capacitively commutated H-bridge, including a comprehensive explanation of the various stages in the switching cycle. Expressions to model the resulting input current, are also given. The derived model allows the inverter to be accurately modeled within a control system simulation over a number of utility input voltage cycles, without resorting to computationally intensive switching-cycle level, time-domain SPICE simulations. Experimental measurements from a prototype H-bridge inverter employed in an induction heating application, are used to demonstrate a high degree of prediction accuracy over a large variation of load conditions is possible using the simplified model

    Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging

    Full text link
    We present the theory, design, and realization of a polarization-insensitive metamaterial absorber for terahertz frequencies. We derive geometrical-independent conditions for effective medium absorbers in general, and for resonant metamaterials specically. Our fabricated design reaches and absorptivity of 78% at 1.145 ThzComment: 6 Pages, 5 figures; figures update

    Brownian Motion in wedges, last passage time and the second arc-sine law

    Full text link
    We consider a planar Brownian motion starting from OO at time t=0t=0 and stopped at t=1t=1 and a set F={OIi;i=1,2,...,n}F= \{OI_i ; i=1,2,..., n\} of nn semi-infinite straight lines emanating from OO. Denoting by gg the last time when FF is reached by the Brownian motion, we compute the probability law of gg. In particular, we show that, for a symmetric FF and even nn values, this law can be expressed as a sum of arcsin\arcsin or (arcsin)2(\arcsin)^2 functions. The original result of Levy is recovered as the special case n=2n=2. A relation with the problem of reaction-diffusion of a set of three particles in one dimension is discussed

    Leaf-applied sodium chloride promotes cadmium accumulation in durum wheat grain

    Get PDF
    Cadmium (Cd) accumulation in durum wheat grain is a growing concern. Among the factors affecting Cd accumulation in plants, soil chloride (Cl) concentration plays a critical role. The effect of leaf NaCl application on grain Cd was studied in greenhouse-grown durum wheat (Triticum turgidum L. durum, cv. Balcali-2000) by immersing (10 s) intact flag leaves into Cd and/or NaCl-containing solutions for 14 times during heading and dough stages. Immersing flag leaves in solutions containing increasing amount of Cd resulted in substantial increases in grain Cd concentration. Adding NaCl alone or in combination with the Cd-containing immersion solution promoted accumulation of Cd in the grains, by up to 41%. In contrast, Zn concentrations of grains were not affected or even decreased by the NaCl treatments. This is likely due to the effect of Cl complexing Cd and reducing positive charge on the metal ion, an effect that is much smaller for Zn. Charge reduction or removal (CdCl2 0 species) would increase the diffusivity/lipophilicity of Cd and enhance its capability to penetrate the leaf epidermis and across membranes. Of even more significance to human health was the ability of Cl alone to penetrate leaf tissue and mobilize and enhance shoot Cd transfer to grains, yet reducing or not affecting Zn transfer

    Numerical simulation of unconstrained cyclotron resonant maser emission

    Get PDF
    When a mainly rectilinear electron beam is subject to significant magnetic compression, conservation of magnetic moment results in the formation of a horseshoe shaped velocity distribution. It has been shown that such a distribution is unstable to cyclotron emission and may be responsible for the generation of Auroral Kilometric Radiation (AKR) an intense rf emission sourced at high altitudes in the terrestrial auroral magnetosphere. PiC code simulations have been undertaken to investigate the dynamics of the cyclotron emission process in the absence of cavity boundaries with particular consideration of the spatial growth rate, spectral output and rf conversion efficiency. Computations reveal that a well-defined cyclotron emission process occurs albeit with a low spatial growth rate compared to waveguide bounded simulations. The rf output is near perpendicular to the electron beam with a slight backward-wave character reflected in the spectral output with a well defined peak at 2.68GHz, just below the relativistic electron cyclotron frequency. The corresponding rf conversion efficiency of 1.1% is comparable to waveguide bounded simulations and consistent with the predictions of kinetic theory that suggest efficient, spectrally well defined radiation emission can be obtained from an electron horseshoe distribution in the absence of radiation boundaries.Publisher PD

    Consolidated science and user requirements for a next generation gravity field mission

    Get PDF
    In an internationally coordinated initiative among the main user communities of gravity field products the science and user requirements for a future gravity field mission constellation (beyond GRACE-FO) have been reviewed and defined. This activity was realized as a joint initiative of the IAG (International Association of Geodesy) Sub-Commissions 2.3 and 2.6, the GGOS (Global Geodetic Observing System) Working Group on Satellite Missions, and the IUGG (International Union of Geodesy and Geophysics). After about one year of preparation, in a user workshop that was held in September 2014 consensus among the user communities of hydrology, ocean, cryosphere, solid Earth and atmosphere on consolidated science requirements could be achieved. The consolidation of the user requirements became necessary, because several future gravity field studies have resulted in quite different performance numbers as a target for a future gravity mission (2025+). Based on limited number of mission scenarios which took also technical feasibility into account, a consolidated view on the science requirements among the international user communities was derived, research fields that could not be tackled by current gravity missions have been identified, and the added value (qualitatively and quantitatively) of these scenarios with respect to science return has been evaluated. The resulting document shall form the basis for further programmatic and technological developments. In this contribution, the main results of this initiative will be presented. An overview of the specific requirements of the individual user groups, the consensus on consolidated requirements as well as the new research fields that have been identified during this process will be discussed
    corecore