research

Brownian Motion in wedges, last passage time and the second arc-sine law

Abstract

We consider a planar Brownian motion starting from OO at time t=0t=0 and stopped at t=1t=1 and a set F={OIi;i=1,2,...,n}F= \{OI_i ; i=1,2,..., n\} of nn semi-infinite straight lines emanating from OO. Denoting by gg the last time when FF is reached by the Brownian motion, we compute the probability law of gg. In particular, we show that, for a symmetric FF and even nn values, this law can be expressed as a sum of arcsin\arcsin or (arcsin)2(\arcsin)^2 functions. The original result of Levy is recovered as the special case n=2n=2. A relation with the problem of reaction-diffusion of a set of three particles in one dimension is discussed

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019