15 research outputs found

    Molecularly Resolved Electronic Landscapes of Differing Acceptor-Donor Interface Geometries

    Full text link
    Organic semiconductors are a promising class of materials for numerous electronic and optoelectronic applications, including solar cells. However, these materials tend to be extremely sensitive to the local environment and surrounding molecular geometry, causing the energy levels near boundaries and interfaces essential to device function to differ from those of the bulk. Scanning Tunneling Microscopy and Spectroscopy (STM/STS) has the ability to examine both the structural and electronic properties of these interfaces on the molecular and submolecular scale. Here we investigate the prototypical acceptor/donor system PTCDA/CuPc using sub-molecularly resolved pixel-by-pixel STS to demonstrate the importance of subtle changes in interface geometry in prototypical solar cell materials. PTCDA and CuPc were sequentially deposited on NaCl bilayers to create lateral heterojunctions that were decoupled from the underlying substrate. Donor and acceptor states were observed to shift in opposite directions suggesting an equilibrium charge transfer between the two. Narrowing of the gap energy compared to isolated molecules on the same surface are indicative of the influence of the local dielectric environment. Further, we find that the electronic state energies of both acceptor and donor are strongly dependent on the ratio and positioning of both molecules in larger clusters. This molecular-scale structural dependence of the electronic states of both interfacial acceptor and donor has significant implications for device design where level alignment strongly correlates to device performance

    基于qPlus技术的扫描探针显微学研究进展

    No full text

    A Label-free Electrochemical Immunosensor Based on Gold Nanoparticles-poly(ferriporphyrin-co-acrylamide)-reduced Graphene Oxide and the Application in Prostate Specific Antigen Detection

    No full text
    Prostate specific antigen (PSA), as a biomarker, plays important roles in early diagnosis of male prostate diseases, especially prostate cancer. In this study, a novel electrochemical probe polymer of poly(ferriporphyrin-co-acrylamide) was synthesized, by further combined with reduced graphene oxide and gold nanoparticles, and oriented immobilization of PSA antibody, a label-free electrochemical immunosensor was obtained, and then successfully applied in the determination of PSA in 10 % non-antigen serum system. The prepared biosensor expressed high selectivity toward PSA, with a LOD of 0.001 ng mL−1, a linear range of 0.01–110 ng mL−1, and a sensitivity of 15.78 µA mL ng−1. What’s more, it showed good stability, well repeatability and high selectivity in the real PSA sample detection. This work provided certain references for the design of the new electrochemical probes and the detection of tumor markers

    Identification of a common ice nucleus on hydrophilic and hydrophobic close-packed metal surfaces

    No full text
    Abstract Establishing a general model of heterogeneous ice nucleation has long been challenging because of the surface water structures found on different substrates. Identifying common water clusters, regardless of the underlying substrate, is one of the key steps toward solving this problem. Here, we demonstrate the presence of a common water cluster found on both hydrophilic Pt(111) and hydrophobic Cu(111) surfaces using scanning tunneling microscopy and non-contact atomic force microscopy. Water molecules self-assemble into a structure with a central flat-lying hexagon and three fused pentagonal rings, forming a cluster consisting of 15 individual water molecules. This cluster serves as a critical nucleus during ice nucleation on both surfaces: ice growth beyond this cluster bifurcates to form two-dimensional (three-dimensional) layers on hydrophilic (hydrophobic) surfaces. Our results reveal the inherent similarity and distinction at the initial stage of ice growth on hydrophilic and hydrophobic close-packed metal surfaces; thus, these observations provide initial evidence toward a general model for water-substrate interaction

    Exceptionally Stiff Two-Dimensional Molecular Crystal by Substrate-Confinement

    No full text
    We demonstrated an approach to effectively apply in-plane pressures to molecular layers by utilizing the substrate confinement effect. The compressed crystal structure and mechanical behaviors of carbon monoxide (CO) monolayer subjected to the confinement of Cu(100) substrate were jointly investigated by low temperature scanning tunneling microscopy experiments and first-principles density functional theory calculations. By increasing molecular coverage, an exceptionally large Young’s modulus of 33 GPa was derived for the constrained CO monolayer film. This extreme in-plane pressure leads to site-specific tilting geometries, polymeric-like electronic states, and vibrational behaviors of CO molecules in the compressed phases. These results provide an extended understanding of the physical and chemical properties of intermolecular interactions in this fundamental system

    Molecularly Resolved Electronic Landscapes of Differing Acceptor–Donor Interface Geometries

    No full text
    Organic semiconductors are a promising class of materials for numerous electronic and optoelectronic applications, including solar cells. However, these materials tend to be extremely sensitive to the local environment and surrounding molecular geometry, causing the energy levels near boundaries and interfaces essential to device function to differ from those of the bulk. Scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STM/STS) have the ability to examine both the structural and electronic properties of these interfaces on the molecular and submolecular scales. Here, we investigate the prototypical acceptor–donor system, 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA)/copper­(II) phthalocyanine (CuPc) using submolecularly resolved pixel-by-pixel STS to demonstrate the importance of subtle changes in interface geometry of prototypical solar cell materials. PTCDA and CuPc were sequentially deposited on NaCl bilayers to create lateral heterojunctions that were decoupled from the underlying substrate. Donor and acceptor states were observed to shift in opposite directions, suggesting an equilibrium charge transfer between the two. Narrowing of the gap energy compared to isolated molecules on the same surface is indicative of the influence of the local dielectric environment. Further, we find that the electronic state energies of both acceptor and donor are strongly dependent on the ratio and positioning of both molecules in larger clusters. This molecular-scale structural dependence of the electronic states of both interfacial acceptor and donor has significant implications for device design, where level alignment strongly correlates to device performance

    Graphene Nanoribbons Derived from Zigzag Edge-Encased Poly(para-2,9-dibenzo[bc,kl]coronenylene) Polymer Chains

    Full text link
    In this work, we demonstrate the bottom-up on-surface synthesis of poly(para-dibenzo[bc,kl]-coronenylene) (PPDBC), a zigzag edge-encased analog of poly(para-phenylene) (PPP), and its lateral fusion into zigzag edge-extended graphene nanoribbons (zeeGNRs). Toward this end, we designed a dihalogenated di(meta-xylyl)anthracene monomer displaying strategic methyl groups at the substituted phenyl ring and investigated its applicability as precursor in the thermally induced surface-assisted polymerization and cyclodehydrogenation. The structure of the resulting zigzag edge-rich (70%) polymer PPDBC was unambiguously confirmed by scanning tunneling microscopy (STM) and non-contact atomic force microscopy (nc-AFM). Remarkably, by further thermal treatment at 450 °C two and three aligned PPDBC chains can be laterally fused into expanded zeeGNRs, with a ribbon width of nine (N = 9) up to 17 (N = 17) carbon atoms. Moreover, the resulting zeeGNRs exhibit a high ratio of zigzag (67%) vs armchair (25%) edge segments and feature electronic band gaps as low as 0.9 eV according to gaps quasiparticle calculations
    corecore