5,817 research outputs found

    Enabling Inter-Repository Access Management between iRODS and Fedora

    Get PDF
    4th International Conference on Open RepositoriesThis presentation was part of the session : Conference PresentationsDate: 2009-06-04 08:30 AM – 10:00 AMMany digital repositories have been built using different technologies such as Fedora and the integrated Rule-Oriented Data System (iRODS). This paper analyzes both the Fedora and iRODS technologies to understand how to integrate the two systems to enable cross-repository data sharing. The areas considered include the digital object model, services, management of distributed storage, external data resources, and policy enforcement.National Science Foundatio

    Two-photon Exchange Corrections to Single Spin Asymmetry of Neutron and 3^3He

    Full text link
    In a simple hadronic model, the two-photon exchange contributions to the single spin asymmetries for the nucleon and the 3^3He are estimated. The results show that the elastic contributions of two-photon exchange to the the single spin asymmetries for the nucleon are rather small while those for the 3^3He are relatively large. Besides the strong angular dependence, the two-photon contributions to the single spin asymmetry for the 3^3He are very sensitive to the momentum transfer.Comment: 11 pages, 8 figure

    Unification of Gravitation, Gauge Field and Dark Energy

    Full text link
    This paper is composed of two correlated topics: 1. unification of gravitation with gauge fields; 2. the coupling between the daor field and other fields and the origin of dark energy. After introducing the concept of ``daor field" and discussing the daor geometry, we indicate that the complex daor field has two kinds of symmetry transformations. Hence the gravitation and SU(1,3) gauge field are unified under the framework of the complex connection. We propose a first-order nonlinear coupling equation of the daor field, which includes the coupling between the daor field and SU(1,3) gauge field and the coupling between the daor field and the curvature, and from which Einstein's gravitational equation can be deduced. The cosmological observations imply that dark energy cannot be zero, and which will dominate the doom of our Universe. The real part of the daor field self-coupling equation can be regarded as Einstein's equation endowed with the cosmological constant. It shows that dark energy originates from the self-coupling of the space-time curvature, and the energy-momentum tensor is proportional to the square of coupling constant \lambda. The dark energy density given by our scenario is in agreement with astronomical observations. Furthermore, the Newtonian gravitational constant G and the coupling constant \epsilon of gauge field satisfy G= \lambda^{2}\epsilon^{2}.Comment: 24 pages, revised version; references added; typos correcte

    Tensor-polarized structure function b1b_1 in the standard convolution description of the deuteron

    Get PDF
    Tensor-polarized structure functions of a spin-1 hadron are additional observables which do not exist for the spin-1/2 nucleon. They could probe novel aspects of the internal hadron structure. Twist-2 tensor-polarized structure functions are b1b_1 and b2b_2, and they are related by the Callan-Gross-like relation in the Bjorken scaling limit. In this work, we theoretically calculate b1b_1 in the standard convolution description for the deuteron. Two different theoretical models, a basic convolution description and a virtual nucleon approximation, are used for calculating b1b_1 and their results are compared with the HERMES measurement. We found large differences between our theoretical results and the data. Although there is still room to improve by considering higher-twist effects and in the experimental extraction of b1b_1 from the spin asymmetry AzzA_{zz}, there is a possibility that the large differences require physics beyond the standard deuteron model for their interpretation. Future b1b_1 studies could shed light on a new field of hadron physics. In particular, detailed experimental studies of b1b_1 will start soon at the Thomas Jefferson National Accelerator Facility. In addition, there are possibilities to investigate tensor-polarized parton distribution functions and b1b_1 at Fermi National Accelerator Laboratory and a future electron-ion collider. Therefore, further theoretical studies are needed for understanding the tensor structure of the spin-1 deuteron, including a new mechanism to explain the large differences between the current data and our theoretical results.Comment: 12 pages, 7 eps figures, 3 style files, typos are corrected as published in Phys. Rev. D 95, 074036 (2017

    Standard convolution description of deuteron tensor spin structure

    Get PDF
    Spin-1 hadrons have additional structure functions not present for spin 1/2 hadrons. These could probe novel aspects of hadron structure and QCD dynamics. For the deuteron, the tensor structure function b1b_1 inherently mixes quark and nuclear degrees of freedom. These proceedings discuss two standard convolution models applied to calculations of the deuteron b1b_1 structure functions. We find large differences with the existing HERMES data and other convolution model calculations. This leaves room for non-standard contributions to b1b_1 in the deuteron. We also discuss the influence of higher twist nuclear effects in the model calculations and data extraction at kinematics covered in HERMES and Jefferson Lab.Comment: Proceedings of 25th International Workshop on Deep Inelastic Scattering and Related Topics, 3-7 April 2017 University of Birmingha

    New Geometric Formalism for Gravity Equation in Empty Space

    Full text link
    In this paper, a complex daor field which can be regarded as the square root of space-time metric is proposed to represent gravity. The locally complexified geometry is set up, and the complex spin connection constructs a bridge between gravity and SU(1,3) gauge field. Daor field equations in empty space are acquired, which are one-order differential equations and not conflict with Einstein's gravity theory.Comment: 20 pages, to appear in Int. J. Mod. Phys.

    HFR Code: A Flexible Replication Scheme for Cloud Storage Systems

    Full text link
    Fractional repetition (FR) codes are a family of repair-efficient storage codes that provide exact and uncoded node repair at the minimum bandwidth regenerating point. The advantageous repair properties are achieved by a tailor-made two-layer encoding scheme which concatenates an outer maximum-distance-separable (MDS) code and an inner repetition code. In this paper, we generalize the application of FR codes and propose heterogeneous fractional repetition (HFR) code, which is adaptable to the scenario where the repetition degrees of coded packets are different. We provide explicit code constructions by utilizing group divisible designs, which allow the design of HFR codes over a large range of parameters. The constructed codes achieve the system storage capacity under random access repair and have multiple repair alternatives for node failures. Further, we take advantage of the systematic feature of MDS codes and present a novel design framework of HFR codes, in which storage nodes can be wisely partitioned into clusters such that data reconstruction time can be reduced when contacting nodes in the same cluster.Comment: Accepted for publication in IET Communications, Jul. 201

    Understanding molecular representations in machine learning: The role of uniqueness and target similarity

    Get PDF
    The predictive accuracy of Machine Learning (ML) models of molecular properties depends on the choice of the molecular representation. Based on the postulates of quantum mechanics, we introduce a hierarchy of representations which meet uniqueness and target similarity criteria. To systematically control target similarity, we rely on interatomic many body expansions, as implemented in universal force-fields, including Bonding, Angular, and higher order terms (BA). Addition of higher order contributions systematically increases similarity to the true potential energy and predictive accuracy of the resulting ML models. We report numerical evidence for the performance of BAML models trained on molecular properties pre-calculated at electron-correlated and density functional theory level of theory for thousands of small organic molecules. Properties studied include enthalpies and free energies of atomization, heatcapacity, zero-point vibrational energies, dipole-moment, polarizability, HOMO/LUMO energies and gap, ionization potential, electron affinity, and electronic excitations. After training, BAML predicts energies or electronic properties of out-of-sample molecules with unprecedented accuracy and speed
    • …
    corecore