
Communication: Understanding molecular representations in machine learning: The
role of uniqueness and target similarity
Bing Huang and O. Anatole von Lilienfeld

Citation: J. Chem. Phys. 145, 161102 (2016); doi: 10.1063/1.4964627
View online: http://dx.doi.org/10.1063/1.4964627
View Table of Contents: http://aip.scitation.org/toc/jcp/145/16
Published by the American Institute of Physics

Articles you may be interested in
Perspective: Machine learning potentials for atomistic simulations
J. Chem. Phys. 145, 170901170901 (2016); 10.1063/1.4966192

Electronic spectra from TDDFT and machine learning in chemical space
J. Chem. Phys. 143, 084111084111 (2015); 10.1063/1.4928757

Accelerating the search for global minima on potential energy surfaces using machine learning
J. Chem. Phys. 145, 154106154106 (2016); 10.1063/1.4964671

Atom-centered symmetry functions for constructing high-dimensional neural network potentials
J. Chem. Phys. 134, 074106074106 (2011); 10.1063/1.3553717

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by edoc

https://core.ac.uk/display/84156879?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/20939943/x01/AIP-PT/JCP_ArticleDL_0117/PTBG_orange_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Huang%2C+Bing
http://aip.scitation.org/author/von+Lilienfeld%2C+O+Anatole
/loi/jcp
http://dx.doi.org/10.1063/1.4964627
http://aip.scitation.org/toc/jcp/145/16
http://aip.scitation.org/publisher/
/doi/abs/10.1063/1.4966192
/doi/abs/10.1063/1.4928757
/doi/abs/10.1063/1.4964671
/doi/abs/10.1063/1.3553717


THE JOURNAL OF CHEMICAL PHYSICS 145, 161102 (2016)

Communication: Understanding molecular representations in machine
learning: The role of uniqueness and target similarity

Bing Huang and O. Anatole von Lilienfelda)

Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel
Materials (MARVEL), Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel,
Switzerland

(Received 31 August 2016; accepted 22 September 2016; published online 24 October 2016)

The predictive accuracy of Machine Learning (ML) models of molecular properties depends on
the choice of the molecular representation. Inspired by the postulates of quantum mechanics, we
introduce a hierarchy of representations which meet uniqueness and target similarity criteria. To
systematically control target similarity, we simply rely on interatomic many body expansions, as
implemented in universal force-fields, including Bonding, Angular (BA), and higher order terms.
Addition of higher order contributions systematically increases similarity to the true potential en-
ergy and predictive accuracy of the resulting ML models. We report numerical evidence for the
performance of BAML models trained on molecular properties pre-calculated at electron-correlated
and density functional theory level of theory for thousands of small organic molecules. Properties
studied include enthalpies and free energies of atomization, heat capacity, zero-point vibrational
energies, dipole-moment, polarizability, HOMO/LUMO energies and gap, ionization potential,
electron affinity, and electronic excitations. After training, BAML predicts energies or electronic
properties of out-of-sample molecules with unprecedented accuracy and speed. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4964627]

Reasonable predictions of ground-state properties of
molecules require computationally demanding calculations
of approximated expectation values of the corresponding
operators.1 Alternatively, Kernel-Ridge-Regression (KRR)
based machine learning (ML) models2 can also infer the
observable in terms of a linear expansion in chemical
compound space.3–6 More specifically, any observable can
be estimated using Oinf(M) = N

i αik(d(M,Mi)), where k is
the kernel function (e.g., Laplacian with training set dependent
width), M is the molecular representation (typically in matrix
or vector format),7,8 and d is a metric (often the L1-norm).
The sum runs over all reference molecules i used for training
to obtain regression weights {αi}. The advantage of such ML
methods consists of (i) their computational efficiency (once
trained, typical speed-up is multiple orders of magnitude with
respect to conventional quantum chemistry) and (ii) their
accuracy can systematically be converged to complete basis
set limit through addition of sufficient training instances.
Their drawback is that they are incapable of extrapolation by
construction, and that they require substantial training data
before reaching satisfying predictive power for out-of-sample
molecules. In practice, addressing the former drawback is
less important since one typically knows beforehand which
ranges of interatomic distances and chemical compositions are
relevant to the chemical problem at hand: It is straightforward
to define the appropriate domain of applicability for the
application of supervised ML models in chemistry. In
recent years, much work has been devoted to tackle the

a)Electronic mail: anatole.vonlilienfeld@unibas.ch

latter drawback, through the discovery and development of
improved representations M.9–16

For large N , errors of ML models have been found to
decay inverse powers of N ,2 implying a linear relationship,
log(Error) = a − b log(N). Therefore, the best representation
must (i) minimize the off-set a and (ii) preserve the linearity in
the second term while maximizing its pre-factor b. According
to the first postulate of quantum mechanics, any system
is represented by its wavefunction Ψ which results from
applying the variational principle to the expectation value
of the Hamiltonian operator. As such, it is important to
recall the one-to-one relationship between the Hamiltonian
and Ψ. While some representations have been introduced
which explicitly mimic the external potential or Ψ (or
its corresponding electron density20)12,21,22 it is obvious
that many observables are extremely sensitive to minute
changes in Ψ. As such we prefer to focus directly on
the system’s Hamiltonian (and its groundstate potential
energy surface) defined throughout chemical compound
space.4–6

Within this study, we have realized that representations
based on increasingly more realistic approximations to the
potential energy surface afford increasingly more accurate
KRR ML models. In other words, the off-set a in the
linear log-log learning curve decreases as one increases
similarity between representation and potential energy (target
similarity). Furthermore, b appears to be a global constant,
independent of the representation’s target similarity, as long
as the crucial12 uniqueness criterion is met.

First, we exemplify the importance of target similarity
for a mock supervised learning task: Modeling a 1D Gaussian
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FIG. 1. Target similarity determines offset a in ML model learning curves log(Error)= a−b log(N ). Panels (a) and (b) illustrate learning curves for ML models
obtained for representations of varying target similarity applied to (a) modeling a 1-D Gaussian target function or (b) enthalpy of atomization for QM7b dataset.8

Lines in (a) correspond to models resulting from linear, quadratic, and various exponential (e−x
n

with n = {1,1.25,1.75,2, and 2.25}) representations. The
inset shows the target function (red) as well as the representations. Learning curves in (b) correspond to models resulting from Coulomb matrices with varying
definition of off-diagonal elements, Z IZJ/R

n
I J , where n is specified in the figure. (c) Illustration that 3-body interactions are crucial for distinguishing two

pairs of homometric Ar4 clusters: pair A (A1 and A2, where l =
√

3s) and pair B (B1 and B2, where m = 2s, l =
√

5s). Horizontal axis label f scales s, where
f = 1 corresponds to the choice s = 3.82 Å. LJ and ATM correspond to Lennard-Jones and Axilrod-Teller-Muto17,18 potentials, respectively. (d) Illustration of
the universal force-field19 based construction of the BA representation.

function (inset Fig. 1(a)). As representations M we use
linear, quadratic, and exponentially decaying functions with
varying exponent of x. Learning curves of resulting ML
models (Fig. 1(a)) indicate systematic improvement as the
target similarity, i.e., similarity of representation to Gaussian
function, increases. Note that all learning curves, with the
notable exception of the quadratic one, exhibit the same slope
b on the log-log plot of the learning curve: They only differ
in learning curve off-set a which coincides with their target
similarity. When using a Gaussian function as a representation,
the smallest off-set is observed—as one would expect. The
error of the ML model using the quadratic function as a
representation does not decrease when adding more training
data: Its minimum is at x = 2, and in the region x > 2 the
function turns upward again, preventing a one-to-one map
between x and representation. In other words, the quadratic
function is not monotonic and therefore lacks uniqueness,
introducing noise in the data which cannot converge to zero
and which results in a constant error for large N . By contrast,
all other representations are monotonic and conserve the one-
to-one map to x. As such, they are unique representations and
they all reduce the logarithm of the error in a linear fashion
at the same rate as the amount of training data grows. While
the rate appears to be solely determined by the uniqueness of
the representation, confirming that uniqueness is a necessary
condition for functional descriptors,6 the off-set a of the

resulting learning curve appears to be solely determined by
target similarity.

To see if our line of reasoning also holds for real
molecules, we have investigated the performance of ML
models for predicting atomization energies of organic
molecules using a set of unique representations with differing
target similarity. More specifically, we calculated learning
curves for ML models resulting from atom adjacency matrices
derived from the Coulomb matrix,7 with off-diagonal elements
MI J = ZIZJ/Rn

I J, where RI J is the interatomic distance
between atoms I and J, and the conventional variant (giving
rise to the name) is recovered for n = 1. For any non-zero
choice of n, these matrices encode the complete polyhedron
defined in the high-dimensional space spanned by all atoms in
the molecules: They uniquely encode the molecule’s geometry
and composition, thereby ensuring a constant b. For negative
n values, however, this representation becomes an unphysical
model of the atomization energy: The magnitude of its
off-diagonal elements increases with interatomic distance.
Corresponding learning curves shown in Fig. 1(b) reflect
this fact: As off-diagonal elements become increasingly
unphysical by dialing in linear and quadratic functions in
interatomic distance, respectively, the off-set a increases.
Conversely, matrix representations with off-diagonal elements
which follow the Coulomb and higher inverse power laws
are more physical and exhibit lower off-sets. Interestingly,



161102-3 B. Huang and O. A. von Lilienfeld J. Chem. Phys. 145, 161102 (2016)

we note the additional improvement as we change from
Coulombic 1/R to van der Waals 1/R6 like power laws.
These results suggest that—after scaling—pairwise London
dispersion kind of interactions are more similar to molecular
atomization energies than simple Coulomb interactions. In
the following, we dub the resulting representation the London
Matrix (LM).

The bag-of-bond (BoB) representation, a stripped down
pair-wise variant of the Coulomb matrix, has resulted in
remarkably predictive ML models.23 Based on the insights
gained from the above, we use the bagging idea as a
starting point for the development of our systematically
improved representation. Unfortunately, when relying on
bags of pair-wise interactions as a representation the
uniqueness requirement is violated by arbitrarily many sets
of geometries, no matter how strong the (effective) target
similarity of the employed functional form. In Fig. 1(c),
we illustrate this problem for two pairs of homometric
molecules, each with four rare gas atoms: Once in a
competition of a pyramidal/planar geometry (A) and once for
a rectangular/triangular pair (B). Within both pairs the atomic
clusters exhibit the exact same list of interatomic distances: 3
s/3 l for pair A and 2 s/2 m/2 l for pair B. Consequently, when
using a pair-wise energy expression, the predicted curve as a
function of a global scaling factor f will be indistinguishable
(example shown in Fig. 1(d) using Lennard-Jones potentials
with parameters for argon). This artificial degeneracy is lifted
only after addition of the corresponding three-body van der
Waals Axilrod-Teller-Muto17,18,35 contribution, allowing to
distinguish the homometric pairs.24

To construct an improved representation based on all
of the above, we simply use a hierarchy consisting of bags
of (1) dressed atoms (MD), (2) atoms and bonds (MB), (2)
atoms, bonds, and angles (MA), and (3) atoms, bonds, angles,
and torsions (MT). To indicate the many-body expansion
character, we dub these feature vectors “BA-representation”
(standing for bags of Bonds, Angles, Torsions, etc. pp.). The
terms are illustrated in Fig. 1(d), and correspond to averaged
atomic contributions to energies of molecules in training set
for atoms, Morse and Lennard-Jones potentials for covalent
and non-covalent intramolecular atom pair-wise bonding,
respectively, as well as sinusoidal functions for angles (three
body) and torsions (four body) between covalently bounded
atoms. Here, we chose functional forms and parameters for
BA-representations to correspond to UFF.19 More technical
details are given in the supplementary material.

We tested UFF based BAML using three previously
established data sets: DFT energies and properties of ∼7k
organic molecules stored in the QM7b data set,8 G4MP2
energies and DFT properties for 6k constitutional isomers of
C7H10O2, and DFT energies and properties for 134k organic
molecules QM9 (both published in Ref. 31). Initial structures
for all datasets were drawn from the GDB universe.32,33 Links
to all data sets are available at http://quantum-machine.org.

Log-log plots of BAML learning curves are shown in
Figs. 2(a) and 2(b) for the C7H10O2 isomers as well as for QM9.
Mean absolute errors (MAEs) for out of sample predictions
of nine properties are shown as a function of training set size
for the BAML model. Properties studied include enthalpies

and free energies of atomization at room temperature, heat-
capacity at room temperature CV , zero-point-vibrational-
energy (ZPVE), norms of dipole moments µ and polarizability
α, as well as HOMO/LUMO eigenvalues and gap. For any
given property, we find near identical learning rates among
BAML models based on bonds (MB), bonds+angles (MA),
and bonds+angles+torsions (MT), respectively. Note how
the learning off-set a decreases systematically as target
similarity to energy grows—for all properties, and for
both data sets. We note that BAML can reach chemical
accuracy (MAE ∼1 kcal/mol with respect to reference) for
atomization enthalpies of C7H10O2 isomers after training
on only 5k molecules, and MAE ∼2.4 and ∼1.6 kcal/mol
for 134k organic molecules in QM9 after training on 10k
and 40k molecules, respectively. Despite its simplicity, such
predictive power has not yet been achieved by any other
ML model, to the best of our knowledge. This observation
confirms the expectations raised based on the aforementioned
arguments.

In Fig. 2(c) individual contributions to the atomization
energy are on display, resulting from bonds, angles, and torsion
representations. For illustration, we have selected outliers,
i.e., three constitutional isomers of C7H10O2 for which the
out-of-sample prediction error is maximal. In all three cases,
these molecules experience high internal strain through few
membered or joint hetero cycles. As such, it is reassuring
to observe that substantial lowering of the error occurs as
soon as the representation accounts explicitly for angular and
torsional degrees of freedom. Fig. 2(d) indicates averaged
changes obtained for the entire constitutional isomer testing
set due to addition of higher order terms to the representation.
More specifically, going from MD to MB (bonds) contributes
on average ∼15 kcal/mol; going from MB to MA (angles)
contributes on average another ∼2 kcal/mol; while going
from MA to MT (torsion) improves things by merely ∼0.5
kcal/mol, on average. Note that the last change might be
small on average, however, for some molecules it can be
consequential if high accuracy shall be achieved, such as
for the aforementioned outliers (Fig. 2(c)). It is encouraging
to see that these contributions decrease systematically. This
suggests that ML models of energies converge rapidly in
the interatomic many-body expansion. It should therefore be
possible to construct local yet accurate ML models which
scale linearly with system size.

The choice to use bags of interatomic many-body poten-
tials as representation is not obvious, many representations
used in the literature rely on the use of other properties, such
as HOMO/LUMO eigenvalues or atomic radii and spectra. For
two reasons we believe an energy based representation to be
advantageous. First, energy is the very observable associated
to the Hamiltonian which defines the system: The potential
energy surface of a given molecular electronic spin-state is
an equally unique representation of the system, two different
systems will always differ in their potential energy surface.
Secondly, energy is well studied and there is a conveniently
large choice of energy models, including UFF, which can be
used as representations.

The construction of representations for modeling other
properties which at the same time also meet the uniqueness

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-012639
http://quantum-machine.org
http://quantum-machine.org
http://quantum-machine.org
http://quantum-machine.org
http://quantum-machine.org
http://quantum-machine.org
http://quantum-machine.org
http://quantum-machine.org
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http://quantum-machine.org
http://quantum-machine.org
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http://quantum-machine.org
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FIG. 2. (a) BAML and polarizability representation based ML learning curves for 9 molecular properties of 6k constitutional isomers of formula C7H10O2.31

Results for Coulomb matrix (CM)7 and bag-of-bonds (BoB)23 are shown for comparison. (b) BAML learning curves for 134k QM9 molecules for the same
9 molecular properties.31 Property models cover H , G, CV, ZPVE, µ, α, εHOMO and εLUMO, i.e., enthalpy, free energy, heat capacity, zero point vibrational
energy, dipole moment, polarizability, HOMO and LUMO energy, respectively. Panel (c) shows convergence of estimated enthalpy values to reference values (all
shifted to zero) for three most extreme outlier isomers in the C7H10O2 using BAML models trained on 5k molecules, and panel (d) is the averaged “contribution”
of each order type in a many-body potential, i.e., the bond, angle, and torsion parts.

criterion is not obvious. To illustrate this aspect, we
constructed a molecular representation (MP) with high
target similarity to another property, namely polarizability.
Reasonable atomic polarizabilities can easily be obtained from
Cartesian coordinates of a molecule, i.e., without electronic
structure calculations, through the use of Voronoi polyhedra.34

Unfortunately, this representation violates the uniqueness
criterion. MP has high similarity to molecular polarizability
but it is not unique: Any other molecule which happens to have
the same set of atomic volumes, irrespective of differences
in geometry, will result in the same representation. Learning
curves obtained for MP based ML models are shown together
with BAML in Fig. 2(a) for all constitutional isomers. All
BAML models have steeper learning curves for all properties
except ZPVE and CV for which the bond based BAML model
performs slightly worse. In the case of the latter, and for

very small unconverged training set sizes, the polarizability
ML model is even better than any BAML model, however,
as training set size grows the lack of uniqueness kicks in
with a flatter learning rate leading to worse performance.
This observation underscores the importance of taking the
convergence behavior into consideration: Learning behavior
can differ in a and b. We note the tendency of the polarizability
based ML model towards a smaller slope (CV , ZPVE, µ,
α), indicating the expected lack of uniqueness. Surprisingly,
even for the target property polarizability MP based ML
models perform worse than BAML. These numerical results
support the idea that Hamiltonian/Ψ/potential energy surface
is “special” in that all other molecular properties can be
derived from them, in direct analogy to the wavefunction
Ψ, necessary to calculate the corresponding expectation
values.
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TABLE I. Mean absolute errors and root mean square errors (in brackets) for the ML predictions of 9 molecular properties of molecules in the QM7b data set.8

Results from this work (BAML, BoB, BoL, CM, LM) are shown together with a previously published estimation (SOAP,21 rand CM8) for the same dataset.
Errors are measured on test set of 2200 randomly selected configurations, while the remaining compounds in QM7b were used for training. Labels specify
property and level of theory: Atomization energy (E), averaged molecular polarizability (α), HOMO and LUMO eigenvalues, ionization potential (IP), electron
affinity (EA), first excitation energy (E∗1st), excitation frequency of maximal absorption (E∗max), and the corresponding maximal absorption intensity (Imax).
Expected averaged deviation from experiment is specified in the last column. Bold and bold-italic numbers indicate respective best performance.

Property SD BAML BoB BoL CM LM SOAP21 rand CM8 Accuracy

E (PBE0) (kcal/mol) 223.69 1.15 (2.54) 1.84 (4.15) 1.77 (4.07) 3.69 (5.77) 2.84 (4.94) 0.92 (1.61) 3.69 (8.30) 3.46,a 5.30,b 2.08-5.07c

α (PBE0) (Å3) 1.34 0.07 (0.12) 0.09 (0.13) 0.10 (0.15) 0.13 (0.19) 0.15 (0.20) 0.05 (0.07) 0.11 (0.18) 0.05-0.27,d 0.04-0.14e

HOMO (GW) (eV) 0.70 0.10 (0.16) 0.15 (0.20) 0.15 (0.20) 0.22 (0.29) 0.20 (0.26) 0.12 (0.17) 0.16 (0.22) . . .
LUMO (GW) (eV) 0.48 0.11 (0.16) 0.16 (0.22) 0.16 (0.22) 0.21 (0.27) 0.19 (0.25) 0.12 (0.17) 0.13 (0.21) . . .
IP (ZINDO) (eV) 0.96 0.15 (0.24) 0.20 (0.28) 0.20 (0.28) 0.33 (0.44) 0.31 (0.41) 0.19 (0.28) 0.17 (0.26) 0.20, 0.15d

EA (ZINDO) (eV) 1.41 0.07 (0.12) 0.17 (0.23) 0.18 (0.24) 0.31 (0.40) 0.25 (0.33) 0.13 (0.18) 0.11 (0.18) 0.16,f 0.11d

E∗1st (ZINDO) (eV) 1.87 0.13 (0.51) 0.21 (0.30) 0.22 (0.31) 0.42 (0.57) 0.35 (0.46) 0.18 (0.41) 0.13 (0.31) 0.18,f 0.21g

E∗max (ZINDO) (eV) 2.82 1.35 (1.98) 1.40 (1.91) 1.47 (2.02) 1.58 (2.05) 1.68 (2.20) 1.56 (2.16) 1.06 (1.76) . . .
Imax (ZINDO) 0.22 0.07 (0.11) 0.08 (0.12) 0.08 (0.12) 0.09 (0.13) 0.09 (0.13) 0.08 (0.12) 0.07 (0.12) . . .

aMAE of formation enthalpy for the G3/99 set by PBE0.25,26

bMAE of atomization energy (AE) for 6 small molecules27,28 by PBE0.
cMAE of AE from various studies29 by B3LYP.
dMAE from various studies29 by B3LYP.
eMAE from various studies by MP2.29

f MAE for the G3/99 set by PBE0.25,26

gMAE for a set of 17 retinal analogues by TD-DFT(PBE0).30

Finally, to place BAML into a broader perspective, we
compare out-of-sample errors to Coulomb, London, and
literature representation results all obtained for the same
molecular data set, QM7b.8 Table I displays MAEs and
RMSEs of the MT based BAML model trained on 5k
molecules, as well as London Matrix (LM), Coulomb Matrix
(CM), BoB (bag of Coulomb matrix elements), bag of
London (BoL) matrix elements, SOAP,21 and randomized
CM based neural network model.8 The SOAP numbers
correspond to a recently introduced sophisticated convolution
of kernel, metric, and representation. BAML yields a MAE for
atomization energy of∼1.15 kcal/mol, only slightly worse than
SOAP’s ∼0.92 kcal/mol. We consider such small differences
to be negligible for most intents and purposes. We also note,
however, in Table I that BAML has a considerably larger
RMSE (2.5 kcal/mol) for the atomization energy than SOAP
(1.6 kcal/mol). Similar observations hold for polarizability.
For HOMO/LUMO eigenvalues, ionization potential, electron
affinity, and the intensity of the most intense peak, BAML
yields lowest MAE and lowest RMSE. BAML also has the
lowest MAE for predicting the first excitation energy (together
with the randomized neural network based Coulomb matrix
model). The lowest RMSE for this property, however, is
obtained using a BOB based ML model. The excitation
energy of the most intense peak in the model is predicted with
the lowest MAE and RMSE when using the randomized
neural network based Coulomb matrix model. BAML is
second for MAE, and third for RMSE (after BoB). To further
illustrate the effect of target similarity, we also report BoL
vs. BoB and LM vs. CM based results. Interestingly, for most
properties, not only the energy, the corresponding London
variant outperforms the Coulomb element based ML models.
This supports the above observation that (a) London is more
similar to atomization energy than Coulomb and (b) the more
similar the representation to energy, the more transferable
and applicable it is also for other properties. We note that this

table does not represent a comprehensive assessment. It would
have been preferable to compare learning curves, such as in
Figs. 2(a) and 2(b). Overall, we believe that BAML emerges
as the most appealing model: It (i) outperforms all previously
established models on average, (ii) is based on understanding
the role of target similarity and uniqueness, (iii) is simple and
easy to interpret, and (iv) is computationally efficient.

In conclusion, we have presented arguments and
numerical evidence in support of the notion that off-set and rate
in learning curves are influenced, if not determined, by the
employed representation’s target similarity and uniqueness,
respectively. For molecules, defined by their Hamiltonian
which produces their wavefunction which produces the
observables, the BAML approach appears to offer uniqueness
as well as considerable similarity to energy. Consequently,
BAML performs universally well for predicting any simple
scalar global quantum mechanical observable. Higher-order
contributions in the form of bonds, angles, and torsional
degrees of freedom enable the systematic lowering of
learning curve off-set a, resulting in BAML models with
unprecedented accuracy, transferability, and speed. Use of
UFF parameters has resulted in consistent and remarkable
numerical performance, but other potentials could have been
used just as well. We note that the converged optimized
learning curves can be seen as a 3D Pareto frontier, spanned
between error, chemical space, and energy similarity. This
frontier negotiates the trade-off between training set size (or
CPU budget), acceptable error, and our understanding of
the molecule. This insight is akin to basis set or electron
correlation convergence plots common in quantum chemistry,
and it could be relevant for generalized automatized generation
of QM derived property models with predefined uncertainty
and transferability.

Technical details pertinent to ML model generation have
been summarized in the supplementary material.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-012639
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