
Enabling Inter-repository Access Management between
iRODS and Fedora

Bing Zhu
U. of California: San Diego

9500 Gilman Drive
La Jolla, CA 92093

(858)534-8373

bizhu@ucsd.du

Richard Marciano
U. of North Carolina at Chapel Hill

202 Manning Hall
Chapel Hill, NC 27599

(919) 962-0033

richard_marciano@unc.edu

Reagan Moore
U. of North Carolina at Chapel Hill

202 Manning Hall
Chapel Hill, NC 27599

(919) 445-9592

rwmoore@renci.org

ABSTRACT
Many digital repositories have been built using different
technologies such as Fedora and the integrated Rule-Oriented
Data System (iRODS). This paper analyzes both the Fedora and
iRODS technologies to understand how to integrate the two
systems to enable cross-repository data sharing. The areas
considered include the digital object model, services, management
of distributed storage, external data resources, and policy
enforcement.

Categories and Subject Descriptors
H.3.7 [Digital Libraries]: Interoperability between Digital
Repositories – object model, storage module, referencing external
resources, policy management.

General Terms
Management, Design, Reliability, Verification.

Keywords
Digital Repository, Distributed Storage, Object Model, Digital
Library, Metadata, Fedora, integrated Rule-Oriented Data System.

1. INTRODUCTION
Today, there are a variety of digital library technologies,
including Fedora, DSpace, iRODS, EPrints, dLibra, and
Greenstone Digital Library software [2, 3]. Multiple groups are
exploring integration of these heterogeneous digital library
systems [1, 16, and 17]. By enabling interoperability between
repositories that are built from different technologies, we can
promote data sharing. Our goal is to integrate the capabilities of
multiple systems, allowing users to access different repositories
via the tools with which they are familiar, while taking advantage
of capabilities that are unique to a specific technology.

Early in the NSF National Science Digital Library (NSDL)
project, an initial integration activity between the Storage
Resource Broker data grid (SRB), and Fedora was developed. In
this project, the SRB was used to manage a large repository of
web materials retrieved from massive web crawls. The Fedora
digital library middleware was used to build a portal that
discovered and retrieved web pages stored in the SRB data grid.
Several web services were developed by the SRB team so that the
web archives could be accessed from the NSDL.

The integrated Rule-Oriented Data System (iRODS) [10, 15] is
the second-generation middleware developed by the Data

Intensive Cyber Environments (DICE) group at Univ. of North
Carolina-Chapel Hill and Univ. of California, San Diego. It builds
upon the concepts that were proven in the Storage Resource
Broker [18] developed by the same group, providing a wide
variety of functions to build and manage digital libraries, data
grids, and distributed stores. The iRODS technology is being used
by multiple projects, including the National Archives and Records
Administration (NARA) and the French National Library to
implement data management systems. As of today, the iRODS
(including SRB) middleware supports very large distributed
repositories that currently manage more than two hundred million
files and petabytes of data [15].

The advantages of using iRODS to build digital repositories
include:

 A uniform global naming space for managing digital
datasets

 An efficient data access mechanism using parallel data
transfer

 Access to data stored on distributed systems
 Rich interfaces including C/C++ API, Java API, Perl,

Web Service, and Python
 Support for remote manipulation of data sets to

minimize the amount of data sent over the network

The Flexible Extensible Digital Object Repository Architecture,
or Fedora, provides a digital asset management architecture that
can be used to build institutional repositories and digital archives
[4, 5]. The integration of Fedora and iRODS can offer the
following advantages.

 Fedora provides a rich presentation layer for objects,
including digital objects and behavior objects.

 iRODS provides a distributed and efficient storage
system.

 iRODS provides networked computational power to
process data through micro-services, or workflows,
inside clusters, UNIX boxes, and Windows machines.

 iRODS provides a suite of solutions for digital
preservation of raw data such as data integrity
verification, data replication, and disaster recovery.

 Fedora provides an explicit XML interface

2. Digital Object Model
iRODS and Fedora use different digital object models for
managing digital assets. An analysis of the mapping between the
two models indicates that both systems are capable of modeling
digital objects that have complex structure.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/4724667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2.1 iRODS Digital Object Model
An iRODS digital object, also called an iRODS dataset, contains
digital content, system metadata and user-defined metadata. The
digital content can be an entire file, or a subset of a file, or a
query result from a database. iRODS objects are organized in a
hierarchical collection-and-dataset architecture. Collections or
sub-collections are virtually created in the iRODS catalog. Each
dataset has a unique global UNIX-like path name. Physical data
for an iRODS object is located in a designated, often remote,
storage system that is specified by system metadata. Both system
and user-defined metadata are stored in an iRODS catalog. The
iRODS catalogs managed by different institutions can be linked
together through federation.

2.2 Fedora Digital Object Model
The Fedora digital object model describes each digital object as a
compound digital object, consisting of a persistent identifier
(PID), an XML document for object property, and a number of
datastreams [6] as is shown in the left side of Fig 1. A Fedora
digital object is modeled in a FOXML XML schema [8]. Multiple
digital entities within a single digital object are supported by
using data streams. For example, a single web page usually
contains multiple images and videos. When preserving this single
web page, a virtual Fedora object can be created for this web
page. The html content of the page, images, and videos can be
saved as datastreams. Extra metadata can also be saved as a
datastream in XML format.

2.3 Registering an iRODS Object into Fedora
Based on the above descriptions of the two digital object models,
an iRODS file can be mapped or registered into Fedora through
the following steps as depicted in Fig 1.

 Create a Fedora object. The full path of the iRODS
object becomes the label of the Fedora object.

 Create an external reference datastream that points to
the iRODS file.

 iRODS system metadata is extracted, wrapped into an
XML document, and saved as a datastream in Fedora.

 iRODS user-defined metadata is extracted, wrapped
into an XML document, and saved as a datastream in
Fedora.

Fig 1. Registering an iRODS digital object into Fedora. The

file content, system metadata, and user metadata of an iRODS
digital object are mapped to three datastreams.

With this mapping, iRODS files can be registered into Fedora.
Fedora provides the user with a front-end interface for managing

iRODS files. Any change to a mapped object, including file
content, system metadata, and user-defined metadata, must be
synched back to iRODS. Besides the above approach which saves
metadata as a datastream, it is possible for both system and user
metadata datastreams to be registered as external datastreams
through URLs. This approach will be described in section 4.2. A
toolkit for bulk registration of iRODS files into Fedora is
currently under development by the DICE team.

2.4 Modeling Fedora Objects in iRODS
An iRODS digital object is a single datastream or file. The
iRODS team developed functions to manage structured files such
as the Tar [19] format and HDF5 [9] format through
corresponding iRODS drivers and micro-services. These functions
provide I/O APIs to access individual files within a structured file.
This provides iRODS the capability to contain multiple
datastreams in a single dataset like Fedora. In storing an object,
Fedora creates an FOXML object in a XML file and saves
datastreams as individual files in the backend store. With a Tar
file, all files for a Fedora object, including the FOXML file and
datastreams can be glued into a single Tar file. When the Tar file
is uploaded into iRODS with the “tar” object type, a user can
request iRODS to expand the structure file into an iRODS
collection. Thus each datastream or file within a Tar file can be
individually accessed [11] and provides a similar naming
mechanism for referring to an individual datastreams as that of
Fedora.

One comment here is that we do not intend to use iRODS as a
front-end for Fedora objects within this study. Our goal is to offer
iRODS users a solution for modeling digital object with complex
structure like that supported by Fedora.

3. Services
There are four types of object models in Fedora: data objects,
service definition objects, service deployment objects, and content
model objects. A service is basically defined by the service
definition and service deployment. And the operation of the
service on a particular digital entity is determined by its content
model object. Since these objects are web service based and
described in FOXML objects, their functionality can be
encapsulated as iRODS micro-services. It is possible for iRODS
to remotely manipulate FOXML objects. The Content Model
service is a new version of the original disseminator model
provided in Fedora 2.0. The model, however, is still a restricted
service that applies only to data objects.

iRODS provides a rule-based micro-service model for executing
workflows within the iRODS system [12]. In addition, iRODS
services don’t have the aforementioned restriction. A wide range
of iRODS services has been developed for disk management,
metadata extraction, and data replication. Currently, iRODS
micro-services are pre-defined and compiled into the system. A
sophisticated integration with Fedora can be realized through
integration of Fedora services as iRODS micro-services.

4. iRODS Storage Module for Fedora
The iRODS data storage module for Fedora can be implemented
in two ways, as a distributed data store to replace Fedora’s default
local store, or by referencing iRODS objects as external

datastreams within Fedora. These two iRODS storage interfaces
provide a true distributed storage service for Fedora. The data
storage module is implemented in Java on the Fedora server side
by using Jargon [13], a Java toolkit developed by the DICE group.
The implementation of the distributed data store is a follow-on to
the DART project [7] at the University of Queensland, Australia.
With this integration, iRODS can provide many functions for
digital preservation such as periodic checking of data integrity,
replication of data, and creation of deep archives [14].

4.1 iRODS serving as a backend store for
Fedora
When using a local store, Fedora stores its objects (in XML) and
datastreams separately in two directories, the data object directory
and datastream directory. The iRODS storage module provides
the Fedora administrator a choice beyond local storage by re-
configuring a Fedora server to replace the local data store with an
iRODS data grid. Fedora objects and datastreams can be
distributed as depicted in Fig 2. In this approach, an iRODS user
account is required to allow files to be saved and accessed in
iRODS. When a Fedora object is created, it actually creates a
FOXML object in iRODS.

Fig 2. Fedora uses iRODS system as a backend Store. iRODS

provides a distributed storage system for Fedora.

The iRODS storage module for Fedora is a standalone library that
is independent of the official Fedora release and can be easily
embedded into a Fedora server by re-configuring the Fedora
storage module. The software can be downloaded from the
iRODS web page at https://www.irods.org/index.php/Fedora.

4.2 Referencing iRODS Objects as Fedora
External Datastreams
The Fedora object model supports multiple data streams inside a
single object. Fedora implemented four types of data streams:
internal XML metadata, managed content, external reference
content, and redirect. Both external reference content and redirect
types of datastreams use external data stored outside Fedora. The
referenced object is currently a URL based object such as a HTTP
file. An on-going effort aims to map each iRODS object as a
recognizable external object through a URL with the following
format:
irods://username:password@host:port/iRODS_file_path

Retrieving data with the above URL is already supported in the
iRODS Jargon toolkit. This integration provides an extremely
flexible mechanism for registering iRODS files into Fedora, in
which iRODS files along with their system and user-defined

metadata are virtually mapped as an iRODS digital object into
Fedora as described in Section 2.3.

5. Policy-level Interoperability
Policy-level interoperability is a research area and is currently
under development with the following research questions.

 Can a preservation environment be assembled from two
existing repositories with differing management
policies?

 Can the policies of the federation be enforced across
both repositories, ensuring consistent management of
the archives?

 Can policies be migrated between repositories, either by
association of the policies with the storage repositories,
or through control of repository procedures?

 What fundamental mechanisms are needed within a
repository to implement new policies?

We are considering three basic integration embedding approaches
(where OM stands for Object Model and ra-DM stands for rule-
aware Distributed Model):

1. ra-DM driving OM. Design policy federation models
that are implemented at the storage level through the ra-
DM. A Fedora object model can be ported on top of
iRODS, and rely upon iRODS to enforce the policies.

2. OM driving ra-DM. Design policy federation models
in which the workflows within the OM model enforce
the policies, but deposit the objects into the ra-DM. In
this case, the policies enforced by Fedora control the
management of the objects stored in iRODS.

3. ra-DM and OM co-driving. Design policy federation
models in which policies are enforced by both types of
preservation environments. This requires coordinating
the impact of the policies between the systems, and
exchanging state information that tracks the outcome of
applying a management policy.

We will focus on the integration of an object model and a policy-
aware distributed data model with Fedora and iRODS as
representative software for each model. iRODS and its policy-
aware repository of rules and built-in rule-engine will be used to
implement and validate the integration concepts.

Summary
The study of the interoperability between iRODS and Fedora
revealed that both systems are capable of modeling digital objects
with complex structure. Both systems can be integrated so that
data can be shared across repositories through virtual object
registration, backend stores, and through external resource
referencing. Policy-level integration will provide higher level
integration of both iRODS and Fedora.

ACKNOWLEDGMENTS
We wish to acknowledge feedback from Will Owen, Dave Pcolar,
Greg Jansen, and Steve Barr at the UNC Chapel Hill Libraries.
They are prototyping an institutional repository based on
integration of Fedora and iRODS as part of the Carolina Digital
Repository (CDR) initiative. We are partnering with the CDR
team and members of Research Computing (Willi Schulz and

https://www.irods.org/index.php/Fedora

Ruth Marinshaw) to explore the use of and integration with
iRODS. In moving forward, a collaboration has been initiated
with Fedora Commons principals (Sandy Payette, Dan Davis) to
further explore policy-based interoperability mechanisms. The
research results in this paper were funded by the NSF Office of
Cyberinfrastructure OCI-0848296 grant, “NARA
Transcontinental Persistent Archive Prototype”, (2008-2012) and
by NSF SDCI 0721400, "SDCI Data Improvement: Data Grids
for Community Driven Applications” (2007-2010).

REFERENCES
[1] Aschenbrenner A., et al. A Workshop Series for

Grid/Repository Integration. D-Lib Magazine, Volume 15
Number 1/2, January/February 2009.

[2] Digital Library. http://en.wikipedia.org/wiki/Digital_library
[3] DSpace. http://www.dspace.org.
[4] Fedora. http://en.wikipedia.org/wiki/Fedora_Commons
[5] Fedora Commons. http://www.fedora-commons.org.
[6] Fedora Digital Object Model. http://fedora-

commons.org/documentation/3.0b1/userdocs/digitalobjects/o
bjectModel.html

[7] Fedora-SRB Database Integration Module.
http://www.itee.uq.edu.au/~eresearch/projects/dart/outc
omes/FedoraDB.php.

[8] Introduction to Fedora Object XML (FOXML). http://fedora
-commons.org/documentation/3.0b1/userdocs/digitalobjects/
introFOXML.html

[9] Hierarchical Data Format. http://www.hdfgroup.org/HDF5/
index.html

[10] iRODS: Data Grids, Digital Libraries, Persistent Archives,
and Real-time Data Systems. http://www.irods.org.

[11] iRODS Release Note 1.1. https://www.irods.org/index.php
/Release_Notes_1.1

[12] iRODS Micro-Services. https://www.irods.org/index.php/
Micro-Services.

[13] Jargon, a Java Client API for the DataGrid. https://www.
irods.org/index.php/Jargon.

[14] Moore, R. Towards a Theory of Digital Preservation. The
International Journal of Digital Curation. Issue 1, Volume 3,
2008.

[15] Moore, R., et al. Rule-Base Distributed Data Management
Introduction. https://www.irods.org/pubs/DICE_Intro_to_
iRODS-0806.pdf.

[16] Moore, R., Rajasekar, A., and Marciano, R. Implementing
Trusted Digital Repositories. DigCCurr2007 International
Symposium in Digital Curation. Chapel Hill, North Carolina,
April, 2007.

[17] On the Need for a General Purpose Digital Object
Repository. http://dltj.org/article/general-purpose-
repository.

[18] Storage Resource Broker. http://www.sdsc.edu/
srb/index.php/Main_Page.

[19] Tar File Format. http://en.wikipedia.org/wiki/
Tar_(file_format).

	1. INTRODUCTION
	Today, there are a variety of digital library technologies, including Fedora, DSpace, iRODS, EPrints, dLibra, and Greenstone Digital Library software [2, 3]. Multiple groups are exploring integration of these heterogeneous digital library systems [1, 16, and 17]. By enabling interoperability between repositories that are built from different technologies, we can promote data sharing. Our goal is to integrate the capabilities of multiple systems, allowing users to access different repositories via the tools with which they are familiar, while taking advantage of capabilities that are unique to a specific technology.
	Early in the NSF National Science Digital Library (NSDL) project, an initial integration activity between the Storage Resource Broker data grid (SRB), and Fedora was developed. In this project, the SRB was used to manage a large repository of web materials retrieved from massive web crawls. The Fedora digital library middleware was used to build a portal that discovered and retrieved web pages stored in the SRB data grid. Several web services were developed by the SRB team so that the web archives could be accessed from the NSDL.
	The integrated Rule-Oriented Data System (iRODS) [10, 15] is the second-generation middleware developed by the Data Intensive Cyber Environments (DICE) group at Univ. of North Carolina-Chapel Hill and Univ. of California, San Diego. It builds upon the concepts that were proven in the Storage Resource Broker [18] developed by the same group, providing a wide variety of functions to build and manage digital libraries, data grids, and distributed stores. The iRODS technology is being used by multiple projects, including the National Archives and Records Administration (NARA) and the French National Library to implement data management systems. As of today, the iRODS (including SRB) middleware supports very large distributed repositories that currently manage more than two hundred million files and petabytes of data [15].
	The advantages of using iRODS to build digital repositories include:
	 A uniform global naming space for managing digital datasets
	 An efficient data access mechanism using parallel data transfer
	 Access to data stored on distributed systems
	 Rich interfaces including C/C++ API, Java API, Perl, Web Service, and Python
	 Support for remote manipulation of data sets to minimize the amount of data sent over the network
	The Flexible Extensible Digital Object Repository Architecture, or Fedora, provides a digital asset management architecture that can be used to build institutional repositories and digital archives [4, 5]. The integration of Fedora and iRODS can offer the following advantages.
	 Fedora provides a rich presentation layer for objects, including digital objects and behavior objects.
	 iRODS provides a distributed and efficient storage system.
	 iRODS provides networked computational power to process data through micro-services, or workflows, inside clusters, UNIX boxes, and Windows machines.
	2. Digital Object Model
	2.1 iRODS Digital Object Model
	2.2 Fedora Digital Object Model
	2.3 Registering an iRODS Object into Fedora
	2.4 Modeling Fedora Objects in iRODS

	3. Services
	4. iRODS Storage Module for Fedora
	4.1 iRODS serving as a backend store for Fedora
	4.2 Referencing iRODS Objects as Fedora External Datastreams

	5. Policy-level Interoperability
	 Can a preservation environment be assembled from two existing repositories with differing management policies?
	 Can the policies of the federation be enforced across both repositories, ensuring consistent management of the archives?
	 Can policies be migrated between repositories, either by association of the policies with the storage repositories, or through control of repository procedures?
	 What fundamental mechanisms are needed within a repository to implement new policies?
	We will focus on the integration of an object model and a policy-aware distributed data model with Fedora and iRODS as representative software for each model. iRODS and its policy-aware repository of rules and built-in rule-engine will be used to implement and validate the integration concepts.
	Summary
	ACKNOWLEDGMENTS
	REFERENCES

