7,215 research outputs found

    Efficient generation of universal two-dimensional cluster states with hybrid systems

    Full text link
    We present a scheme to generate two-dimensional cluster state efficiently. The number of the basic gate-entangler-for the operation is in the order of the entanglement bonds of a cluster state, and could be reduced greatly if one uses them repeatedly. The scheme is deterministic and uses few ancilla resources and no quantum memory. It is suitable for large-scale quantum computation and feasible with the current experimental technology.Comment: 6 pages, 5 figure

    Microscopic description of octupole shape-phase transitions in light actinides and rare-earth nuclei

    Get PDF
    A systematic analysis of low-lying quadrupole and octupole collective states is presented, based on the microscopic energy density functional framework. By mapping the deformation constrained self-consistent axially symmetric mean-field energy surfaces onto the equivalent Hamiltonian of the sdfsdf interacting boson model (IBM), that is, onto the energy expectation value in the boson condensate state, the Hamiltonian parameters are determined. The study is based on the global relativistic energy density functional DD-PC1. The resulting IBM Hamiltonian is used to calculate excitation spectra and transition rates for the positive- and negative-parity collective states in four isotopic chains characteristic for two regions of octupole deformation and collectivity: Th, Ra, Sm and Ba. Consistent with the empirical trend, the microscopic calculation based on the systematics of β2\beta_{2}-β3\beta_{3} energy maps, the resulting low-lying negative-parity bands and transition rates show evidence of a shape transition between stable octupole deformation and octupole vibrations characteristic for β3\beta_{3}-soft potentials.Comment: 18 pages, 18 figures, 1 tabl

    Experimental quantum key distribution with active phase randomization

    Get PDF
    Phase randomization is an important assumption made in many security proofs of practical quantum key distribution (QKD) systems. Here, we present the first experimental demonstration of QKD with reliable active phase randomization. One key contribution is a polarization-insensitive phase modulator, which we added to a commercial phase-coding QKD system to randomize the global phase of each bit. We also proposed a simple but useful method to verify experimentally that the phase is indeed randomized. Our result shows very low QBER (<1%). We expect this active phase randomization process to be a standard part in future QKD set-ups due to its significance and feasibility.Comment: 3 pages, 3 figures, RevTE

    Finite Temperature Phase Diagram in Rotating Bosonic Optical Lattice

    Full text link
    Finite temperature phase boundary between superfluid phase and normal state is analytically derived by studying the stability of normal state in rotating bosonic optical lattice. We also prove that the oscillation behavior of critical hopping matrix directly follows the upper boundary of Hofstadter butterfly as the function of effective magnetic field.Comment: 10 pages, 2 figure

    Can optical afterglows be used to discriminate between Type I and Type II GRBs?

    Full text link
    The precise localization of short/hard (Type I) gamma-ray bursts (GRBs) in recent years has answered many questions but raised even more. I present some results of a systematic study of the optical afterglows of long/soft (Type II) and short/hard (Type I) GRBs, focusing on the optical luminosity as another puzzle piece in the classification of GRBs.Comment: 7 Pages, 2 figures, to be published in the "2008 Nanjing GRB Conference" conference proceedings, figures have been downsample

    The ensemble photometric variability of over 10510^5 quasars in the Dark Energy Camera Legacy Survey and the Sloan Digital Sky Survey

    Full text link
    We present the ensemble variability analysis results of quasars using the Dark Energy Camera Legacy Survey (DECaLS) and the Sloan Digital Sky Survey (SDSS) quasar catalogs. Our dataset includes 119,305 quasars with redshifts up to 4.89. Combining the two datasets provides a 15-year baseline and permits analysis of the long timescale variability. Adopting a power-law form for the variability structure function, V=A(t/1yr)γV=A(t/1yr)^{\gamma}, we use the multi-dimensional parametric fitting to explore the relationships between the quasar variability amplitude and a wide variety of quasar properties, including redshift (positive), bolometric luminosity (negative), rest-frame wavelength (negative), and black hole mass (uncertain). We also find that γ\gamma can be also expressed as a function of redshift (negative), bolometric luminosity (positive), rest-frame wavelength (positive), and black hole mass (positive). Tests of the fitting significance with the bootstrap method show that, even with such a large quasar sample, some correlations are marginally significant. The typical value of γ\gamma for the entire dataset is ≳0.25\gtrsim 0.25, consistent with the results in previous studies on both the quasar ensemble variability and the structure function. A significantly negative correlation between the variability amplitude and the Eddington ratio is found, which may be explained as an effect of accretion disk instability.Comment: 13 pages, 8 figures, 4 tables, accepted for publication in Ap

    Quantum Manifestations of Graphene Edge Stress and Edge Instability: A First-Principles Study

    Full text link
    We have performed first-principles calculations of graphene edge stresses, which display two interesting quantum manifestations absent from the classical interpretation: the armchair edge stress oscillates with a nanoribbon width, and the zigzag edge stress is noticeably reduced by spin polarization. Such quantum stress effects in turn manifest in mechanical edge twisting and warping instability, showing features not captured by empirical potentials or continuum theory. Edge adsorption of H and Stone-Wales reconstruction are shown to provide alternative mechanisms in relieving the edge compression and hence to stabilize the planar edge structure.Comment: 5figure

    Global Shifts in Agro-Industrial Capital and the Case of Soybean Crushing: Implications for Managers and Policy Makers

    Get PDF
    Tremendous shifts are occurring in the location of agro-industrial capital around the globe. To focus discussion on this topic a session was convened at the annual meeting of the International Food and Agribusiness Management Association in Montreux, Switzerland in June of 2004. The session brought together researchers and industry leaders to better understand these dramatic shifts and the implications they hold for the agri-food system. The following article emerges from that session. The first part of the article provides the context for the discussion by looking at global shifts in soybean processing investment. The second part entails reaction by three industry panelists.Soybeans, Processing, Investment, Global strategy, Agribusiness, Agricultural and Food Policy,

    Pion charge form factor and constraints from space-time translations

    Full text link
    The role of Poincar\'e covariant space-time translations is investigated in the case of a relativistic quantum mechanics approach to the pion charge form factor. It is shown that the related constraints are generally inconsistent with the assumption of a single-particle current, which is most often referred to. The only exception is the front-form approach with q+=0q^+=0. How accounting for the related constraints, as well as restoring the equivalence of different RQM approaches in estimating form factors, is discussed. Some extensions of this work and, in particular, the relationship with a dispersion-relation approach, are presented. Conclusions relative to the underlying dynamics are given.Comment: 6 pages, 2 figures, proceedings of the QNP2009 international conference (Beijing, oct. 2009), to be published in Chinese Physics
    • …
    corecore