208 research outputs found
E-cadherin promotes intraepithelial expansion of bladder carcinoma cells in an in vitro model of carcinoma in situ
High-grade transitional cell carcinomas (TCCs) of the urinary bladder are
frequently associated with carcinoma in situ, which may replace large
areas of the mucosa of the urinary tract. The invasive component of TCCs
often reveals a loss of expression of the cell-cell adhesion molecule
E-cadherin, but the role of E-cadherin in the development and expansion of
intraepithelial neoplasia is unknown. To study the underlying mechanism of
intraepithelial expansion (IEE), we have developed an IEE assay. Human TCC
cell lines were investigated in this IEE assay for their capacity to
replace the surrounding normal murine urothelial cells. In vitro IEE
appeared to be prominent in three (SD, RT112, and 1207) of the four
E-cadherin-positive cell lines. Although the two E-cadherin-negative cell
lines (T24 and J82) were able to penetrate surrounding normal urothelium
as single cells, they largely lacked the capacity of IEE. These results
prompted us to investigate whether the cell-cell adhesion molecule
E-cadherin is an important determinant for IEE. T24 cells that were
transfected with full-length mouse E-cadherin cDNA displayed an enhanced
IEE rate. Transfection did not influence their proliferative capacity,
their pattern and level of integrin expression, or their ability to expand
in the absence of surrounding urothelium. The data suggest that
E-cadherin-mediated cohesiveness is an important factor in the IEE of
bladder carcinoma cells. These observations argue for a dual, paradoxical
role of E-cadherin in bladder tumorigenesis. On the one hand, E-cadherin
promotes the expansion of intraepithelial neoplasia; on the other hand,
its loss correlates with invasive behavior
Functional tests to guide management in an adult with loss of function of type-1 angiotensin II receptor
BACKGROUND: Genetic loss of function of AGT (angiotensinogen), REN (renin), ACE (angiotensin-converting enzyme), or AGTR1 (type-1 angiotensin II receptor) leads to renal tubular dysgenesis (RTD). This syndrome is almost invariably lethal. Most surviving patients reach stage 5 chronic kidney disease at a young age. METHODS: Here, we report a 28-year-old male with a homozygous truncating mutation in AGTR1 (p.Arg216*), who survived the perinatal period with a mildly impaired kidney function. In contrast to classic RTD, kidney biopsy showed proximal tubules that were mostly normal. During the subsequent three decades, we observed evidence of both tubular dysfunction (hyperkalemia, metabolic acidosis, salt-wasting and a urinary concentrating defect) and glomerular dysfunction (reduced glomerular filtration rate, currently ~30 mL/min/1.73 m(2), accompanied by proteinuria). To investigate the recurrent and severe hyperkalemia, we performed a patient-tailored functional test and showed that high doses of fludrocortisone induced renal potassium excretion by 155%. Furthermore, fludrocortisone lowered renal sodium excretion by 39%, which would have a mitigating effect on salt-wasting. In addition, urinary pH decreased in response to fludrocortisone. Opposite effects on urinary potassium and pH occurred with administration of amiloride, further supporting the notion that a collecting duct is present and able to react to fludrocortisone. CONCLUSIONS: This report provides living proof that even truncating loss-of-function mutations in AGTR1 are compatible with life and relatively good GFR and provides evidence for the prescription of fludrocortisone to treat hyperkalemia and salt-wasting in such patients. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00467-021-05018-7
Recurrent FXYD2 p.Gly41Arg mutation in patients with isolated dominant hypomagnesaemia
Background Magnesium (Mg2+) is an essential ion for cell growth, neuroplasticity and muscle contraction. Blood Mg2+ levels <0.7 mmol/L may cause a heterogeneous clinical phenotype, including muscle cramps and epilepsy and disturbances in K+ and Ca2+ homeostasis. Over the last decade, the genetic origin of several familial forms of hypomagnesaemia has been found. In 2000, mutations in FXYD2, encoding the γ-subunit of the Na+-K+-ATPase, were identified to cause isolated dominant hypomagnesaemia (IDH) in a large Dutch family suffering from hypomagnesaemia, hypocalciuria and chondrocalcinosis. However, no additional patients have been identified since then. Methods Here, two families with hypomagnesaemia and hypocalciuria were screened for mutations in the FXYD2 gene. Moreover, the patients were clinically and genetically characterized. Results We report a p.Gly41Arg FXYD2 mutation in two families with hypomagnesaemia and hypocalciuria. Interestingly, this is the same mutation as was described in the original study. As in the initial family, several patients suffered from muscle cramps, chondrocalcinosis and epilepsy. Haplotype analysis revealed an overlapping haplotype in all families, suggesting a founder effect. Conclusions The recurrent p.Gly41Arg FXYD2 mutation in two new families with IDH confirms that FXYD2 mutation causes hypomagnesaemia. Until now, no other FXYD2 mutations have been reported which could indicate that other FXYD2 mutations will not cause hypomagnesaemia or are embryonically letha
Lifelong challenge of calcium homeostasis in male mice lacking TRPV5 leads to changes in bone and calcium metabolism
Trpv5 plays an important role in calcium (Ca2+) homeostasis, among others by mediating renal calcium reabsorption. Accordingly, Trpv5 deficiency strongly stresses Ca2+ homeostasis in order to maintain stable serum Ca2+. We addressed the impact of lifelong challenge of calcium homeostasis on the bone phenotype of these mice. Aging signifi
Development of a thermostable spray dried outer membrane vesicle pertussis vaccine for pulmonary immunization
Worldwide resurgence of whooping cough calls for improved, next-generation pertussis vaccines that induce broad and long-lasting immunity. A mucosal pertussis vaccine based on outer membrane vesicles (omvPV) is a promising candidate. Further, a vaccine that is stable outside the cold chain would be of substantial advantage for worldwide distribution and application. A vaccine formulated as a powder could both stabilize the vaccine as well as make it suitable for pulmonary vaccination. To that end, we developed a spray dried omvPV with improved stability compared to the liquid omvPV formulation. Spray drying did not affect the structural integrity of the omvPV. The antigenicity of Vag8, a major antigen in omvPV was diminished slightly and an altered tryptophan fluorescence indicated some changes in protein structure. However, when administered via the pulmonary route in mice after reconstitution, spray dried omvPV showed comparable immune responses and protection against challenge with live B. pertussis as liquid omvPV. Mucosal IgA and Th17 responses were established in addition to broad systemic IgG and Th1/Th17 responses, indicating the induction of an effective immunity profile. Overall, a spray dried omvPV was developed that maintained effective immunogenic properties and has an improved storage stability
The impact of formative testing on study behaviour and study performance of (bio)medical students: a smartphone application intervention study.
BACKGROUND: Formative testing can increase knowledge retention but students often underuse available opportunities. Applying modern technology to make the formative tests more attractive for students could enhance the implementation of formative testing as a learning tool. This study aimed to determine whether formative testing using an internet-based application ("app") can positively affect study behaviour as well as study performance of (bio)medical students. METHODS: A formative testing app "Physiomics, to the next level" was introduced during a 4-week course to a large cohort (n = 461) of Dutch first year (bio)medical students of the Radboud University. The app invited students to complete 7 formative tests throughout the course. Each module was available for 3-4 days to stimulate the students to distribute their study activities throughout the 4-week course. RESULTS: 72% of the students used the app during the course. Study time significantly increased in intensive users (p < 0.001), while no changes were observed in moderate (p = 0.07) and non-users (p = 0.25). App-users obtained significantly higher grades during the final exam of the course (p < 0.05). Non-users more frequently failed their final exam (34%, OR 3.6, 95% CI: 2.0-6.4) compared to moderate users (19%) and intensive users (12%). Students with an average grade <6.5 during previous courses benefitted most from the app, as intensive (5.8 ± 0.9 / 36%) and moderate users (5.8 ± 0.9 / 33%) obtained higher grades and failed their exam less frequently compared to non-users (5.2 ± 1.1 / 61%). The app was also well appreciated by students; students scored the app with a grade of 7.3 ± 1.0 out of 10 and 59% of the students indicated that they would like the app to be implemented in future courses. CONCLUSIONS: A smartphone-based application of formative testing is an effective and attractive intervention to stimulate study behaviour and improve study performance in (bio) medical students
Recommended from our members
Interleukin 18 function in atherosclerosis is mediated by the interleukin 18 receptor and the Na-Cl co-transporter
Interleukin-18 (IL18) participates in atherogenesis through several putative mechanisms1, 2. Interruption of IL18 action reduces atherosclerosis in mice3, 4. Here, we show that absence of the IL18 receptor (IL18r) does not affect atherosclerosis in apolipoprotein E–deficient (Apoe−/−) mice, nor does it affect IL18 cell surface binding to or signaling in endothelial cells. As identified initially by co-immunoprecipitation with IL18, we found that IL18 interacts with the Na-Cl co-transporter (NCC; also known as SLC12A3), a 12-transmembrane-domain ion transporter protein preferentially expressed in the kidney5. NCC is expressed in atherosclerotic lesions, where it colocalizes with IL18r. In Apoe−/− mice, combined deficiency of IL18r and NCC, but not single deficiency of either protein, protects mice from atherosclerosis. Peritoneal macrophages from Apoe−/− mice or from Apoe−/− mice lacking IL18r or NCC show IL18 binding and induction of cell signaling and cytokine and chemokine expression, but macrophages from Apoe−/− mice with combined deficiency of IL18r and NCC have a blunted response. An interaction between NCC and IL18r on macrophages was detected by co-immunoprecipitation. IL18 binds to the cell surface of NCC-transfected COS-7 cells, which do not express IL18r, and induces cell signaling and cytokine expression. This study identifies NCC as an IL18-binding protein that collaborates with IL18r in cell signaling, inflammatory molecule expression, and experimental atherogenesis
- …