77 research outputs found

    Binding of Ions to Nuclear Chromatin

    Get PDF
    Ion concentrations in isolated lymphocyte nuclei subjected to KCl or MgCl2 media of varying ionic strength were measured by X-ray microanalysis. Values were corrected for the contribution of free ions by estimating the volume fraction of the water space morphometrically. The amount of bound cations and Cl was constant and independent of the widely varying free ion concentration. It is concluded that the mechanism of binding is counterion condensation but with limited cooperativity. In contrast to classical counterion condensation theory, the binding of ions occurs at oppositely charged clusters at the surface of the chromatin. Therefore, both cations and anions are bound and binding cannot be completely delocalized. The bound ions stabilize the basic chromatin fibre but are not involved in the regulation of the transition between the condensed and decondensed state. Using earlier data, we estimated the concentration of free cations in rat liver nuclei under in-vivo conditions to be in the order of about 80 mM

    Secretory apparatus assessed by analysis of pancreatic secretory stress protein expression in a rat model of chronic pancreatitis

    Get PDF
    Secretory stress proteins (SSP) are a family of proteins including isoforms of pancreatitis-associated protein (PAP) and pancreatic stone protein (PSP/reg). In vitro exposure to trypsin results in the formation of insoluble fibrillar structures. SSP are constitutively secreted into pancreatic juice at low levels. The WBN/Kob rat is a model for chronic pancreatitis, displaying focal inflammation, destruction of the parenchyma and changes in the architecture of the acinar cell; the synthesis and secretion of SSP are also increased. We have investigated the secretory apparatus by SSP immunohistochemistry at the light- and electron-microscopical (EM) levels. Immunocytochemistry of PSP/reg in Wistar control rats reveals low levels, with individual acinar cells exhibiting high immunoreactivity in zymogen granules. PAP is not detectable. In the WBN/Kob rat, PSP/reg and PAP immunoreactivity is markedly increased. Double immunofluorescence for PSP/reg and PAPI or II demonstrates that these proteins colocalize to the same cell. Acinar cells change their secretory architecture by fusion of zymogen granules and elongation of the fused organelles. The immunogold technique has demonstrated an increase of SSP in zymogen granules in WBN/Kob rats. PSP/reg-positive zymogen granules fuse to form elongated structures with fibrillar contents. An extensive PSP/reg-positive fibrillar network is established in the cytosol. Extracellular fibrils have been observed in several ductules. Thus, SSP-derived fibrils form concomitantly with acinar damage in the WBN/Kob rat. Based on the known tryptic cleavage site of SSP, the in vivo generation of fibrils is presumably the result of premature trypsin activatio

    Immunoadsorption of agonistic autoantibodies against Ī±1-adrenergic receptors in patients with mild to moderate dementia

    Get PDF
    Dementia has been shown to be associated with agonistic autoantibodies. The deleterious action of autoantibodies on the {alpha}1-adrenergic receptor for brain vasculature has been demonstrated in animal studies. In the current study, 169 patients with dementia were screened for the presence of agonistic autoantibodies. 47% of patients suffering from mild to moderate Alzheimer's disease and/or vascular dementia carried these autoantibodies. Eight patients positive for autoantibodies underwent immunoadsorption. Patients treated on four consecutive days were subsequently negative for autoantibodies and displayed stabilization of cognitive and mental condition during 12-18 months' follow-up. In patients treated for 2-3 days, autoantibodies were reduced by only 78%. They suffered a rebound of autoantibodies during follow-up, benefited from immunoadsorption too, but their mental parameters worsened. We provide first data on the clinical relevance of agonistic autoantibodies in dementia and show that immunoadsorption is safe and efficient in removing autoantibodies with overall benefits for patients

    Antibodies to the alpha(1)-adrenergic receptor cause vascular impairments in rat brain as demonstrated by magnetic resonance angiography

    Get PDF
    BACKGROUND: Circulating agonistic autoantibodies acting at G protein-coupled receptors have been associated with numerous sever pathologies in humans. Antibodies directed predominantly against the alpha(1)-adrenergig receptor were detected in patients suffering from widespread diseases such as hypertension and type 2 diabetes. Their deleterious action has been demonstrated for peripheral organs. We postulate that antibodies to the alpha(1)-adrenergig receptor are relevant pathomolecules in diseases of the central nervous system associated with vascular impairments. METHODOLOGY/PRINCIPAL FINDINGS: Using a rat model we studied the long-term action of antibodies against the alpha(1)-adrenergig receptor either induced by immunization with a receptor peptide or applied by intravenous injection. The vasculature in the rat brains was investigated by time-of-flight magnetic resonance angiography using a 9.4 Tesla small animal MR imaging system. Visual examination of maximum-intensity-projections (MIPs) of brain angiographs revealed the development of vascular defects in antibody- exposed animals between three and eight months of treatment. Relative vascular areas were derived from representative MIP image sections by grayscale analysis and used to form an index of vascular circulation. Animals exposed to the action of alhpa(1)-adrenergig receptor antibodies showed significantly reduced vascular areas (p<0.05). Calculated index values indicated attenuated blood flow in both antibody-treated cohorts compared to their respective controls reaching with (relative units Ā± standard error, nā€Š=ā€Š10) 0.839Ā±0.026 versus 0.919Ā±0.026 statistical significance (p<0.05) for peptide-immunized rats. CONCLUSION/SIGNIFICANCE: We present evidence that antibodies to the Ī±(1)-adrenergig receptor cause cerebrovascular impairments in the rat. Our findings suggest the pathological significance of these antibodies in pathologies of the human central nervous system linked to impairments of brain vasculature such as stroke and dementia

    Expression of Pancreatitis-Associated Protein after Traumatic Brain Injury: A Mechanism Potentially Contributing to Neuroprotection in Human Brain

    Get PDF
    Neuronal cell death after severe traumatic brain injury (TBI) is caused by a complex interplay of pathological mechanisms including excitotoxicity, oxidative stress, mitochondrial dysfunction, extensive neuroinflammation, and ischemia-reperfusion injury. Pancreatitis-associated protein I (PAP I/reg2) was reported to be a survival factor for peripheral neurons, particularly sensory and motor neurons. In rat brains, by experimental TBI as well as by kainic acid induced brain seizure, PAP I and PAP III were found to be up-regulated in central neurons. In this study, we performed immunohistochemical staining in postmortem human brain from patients who died after severe TBI to demonstrate PAP expression on protein level in cerebellar Purkinje cells, pyramidal and granular neurons in cerebral cortex, and cortical neurons in the fore- and mid-brain. In primary cultures of rat brain cortical, hippocampal, and cerebellar neurons, we found neuroprotective effects for PAP I on H2O2-induced oxidative stress. Moreover, serum K+-deprivation induces apoptotic cell death in 55% of cerebellar granule neurons (CGN), whereas upon treatment with PAP I only 32% of CGN are apoptotic. Using Western blot analyses, we compared protein phosphorylation in neuronal signaling pathways activated by PAP I versus Interleukin-6 (IL-6). We found a rapid activation of Akt-kinase phosphorylation by PAP I with a peak at 15min, whereas IL-6 induces Akt-phosphorylation lasting longer than 30min. Phosphorylation of MAP-42/44 kinases is stimulated in a comparable fashion. Both, IL-6 and PAP I increase phosphorylation of NFĪŗB for activation of gene transcription, whereas only IL-6 recruits STAT3 phosphorylation, indicating that STAT3 is not a target of PAP I transcription activation in brain neurons. Application of the Akt-inhibitor Wortmanin reveals only a partial inhibition of PAP I-dependent protection of CGN from H2O2-induced oxidative stress. Based on our findings, we suggest that PAP I is a long lasting neurotrophic signal for central neurons. The neuroprotective effects parallel those that have been described for effects of PAP I in ciliary neurotrophic factor (CNTF)-mediated survival of sensory and motor neurons. PAP I may act in autocrine and/or paracrine fashion and thus may contribute to endogenous protective mechanisms relevant under harmful conditions like oxidative stress, brain injury, or neurodegeneratio

    The pancreas responds to remote damage and systemic stress by secretion of the pancreatic secretory proteins PSP/regI and PAP/regIII.

    Get PDF
    In patients with infection and sepsis serum levels of Pancreatic Stone protein/regenerating protein I (PSP) are highly elevated. The origin of PSP during these conditions is presumably the pancreas, however, an intestinal origin cannot be excluded. Similarly, pancreatitis-associated protein (PAP) was identified in the pancreas. These proteins were also localized in intestinal organs. Here we aim to elucidate the bio-distribution of PSP and PAP in animal models of sepsis and in healthy humans. PSP and PAP responded to remote lesions in rats although the pancreatic response was much more pronounced than the intestinal. Tissue distribution of PSP demonstrated a 100-fold higher content in the pancreas compared to any other organ while PAP was most abundant in the small intestine. Both proteins responded to CLP or sham operation in the pancreas. PSP also increased in the intestine during CLP. The distribution of PSP and PAP in human tissue mirrored the distribution in the murine models. Distribution of PSP and PAP was visualized by immunohistochemistry. Rats and mice underwent midline laparotomies followed by mobilization of tissue and incision of the pancreatic duct or duodenum. Standard cecum-ligation-puncture (CLP) procedures or sham laparotomies were performed. Human tissue extracts were analyzed for PSP and PAP. The pancreas reacts to remote lesions and septic insults in mice and rats with increased PSP synthesis, while PAP is selectively responsive to septic events. Furthermore, our results suggest that serum PSP in septic patients is predominantly derived through an acute phase response of the pancreas

    Caerulein-induced acute pancreatitis in mice that constitutively overexpress Reg/PAP genes

    Get PDF
    BACKGROUND: The cystic fibrosis (CF) mouse pancreas has constitutively elevated expression of the Reg/PAP cell stress genes (60-fold greater Reg3Ī±, and 10-fold greater PAP/Reg3Ī² and Reg3Ī³). These genes are suggested to be involved in protection or recovery from pancreatic injury. METHODS: To test this idea the supramaximal caerulein model was used to induce acute pancreatitis in wild type and CF mice. Serum amylase, pancreatic water content (as a measure of edema), pancreatic myeloperoxidase activity, and Reg/PAP expression were quantified. RESULTS: In both wild type and CF mice caerulein induced similar elevations in serum amylase (maximal at 12 h), pancreatic edema (maximal at 7 h), and pancreatic myeloperoxidase activity (MPO, a marker of neutrophil infiltration; maximal at 7 h). By immunohistochemistry, Reg3Ī± was strongly expressed in the untreated CF pancreas but not in wild type. During pancreatitis, Reg3Ī± was intensely expressed in foci of inflamed tissue in both wild type and CF. CONCLUSION: These data demonstrate that the severity of caerulein-induced pancreatitis is not ameliorated in the CF mouse even though the Reg/PAP stress genes are already highly upregulated. While Reg/PAP may be protective they may also have a negative effect during pancreatitis due to their anti-apoptotic activity, which has been shown to increase the severity of pancreatitis
    • ā€¦
    corecore