180 research outputs found

    Evaluation of natural compounds against Listeria innocua: Translating in vitro success to processed meat models

    Get PDF
    Ensuring food safety is a significant challenge in the processed meat industry. Listeria monocytogenes represents a persistent threat due to its ability to grow in adverse conditions. Nowadays, there's a growing interest in natural preservatives to inhibit its proliferation in foods. Accordingly, the aim of the present study was to preliminarily evaluate the in vitro inhibitory activity of various natural antimicrobial agents against Listeria innocua, used as a surrogate for L. monocytogenes. Thyme essential oil (EO) emerged as the most effective candidate for further in vivo testing in pork minced meat with 40% fat and no additional fat, deliberately contaminated with L. innocua. The samples were stored for 20 days under two different temperature conditions, mimicking common procedures used to produce salami with short ripening periods and high fat content, such as the Italian Ciauscolo PGI salami, either through spontaneous fermentation or with the use of starter cultures. In vivo, the inhibitory effect of thyme EO was minimal or absent, regardless of fat content. Statistically significant decreases in L. innocua counts (<2%) were sporadic and observed solely in samples stored under temperature conditions mimicking the typical procedure for spontaneously fermented salami production. However, this effect was not sustained until the end of the experiment. While thyme EO demonstrated potential as an antilisterial agent in vitro, our findings highlight the complex interaction between antimicrobial agents and food matrices, revealing challenges in practical applications. This underscores the importance of further investigation elucidating the effectiveness of antimicrobial agents in real food systems

    A novel IgE antibody targeting the prostate-specific antigen as a potential prostate cancer therapy

    Get PDF
    Prostate cancer (PCa) is the second leading cause of cancer deaths in men in the United States. The prostate-specific antigen (PSA), often found at high levels in the serum of PCa patients, has been used as a marker for PCa detection and as a target of immunotherapy. The murine IgG1 monoclonal antibody AR47.47, specific for human PSA, has been shown to enhance antigen presentation by human dendritic cells and induce both CD4 andCD8 T-cell activation when complexed with PSA. In this study, we explored the properties of a novel mouse/human chimeric anti-PSA IgE containing the variable regions of AR47.47 as a potential therapy for PCa. Our goal was to take advantage of the unique properties of IgE in order to trigger immune activation against PCa.Fil: Daniels-Wells, Tracy R. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América;Fil: Helguera, Gustavo Fernando. Universidad de Buenos Aires. Facultad de Farmacia y Bioquimica. Departamento de Tecnologia Farmaceutica; Argentina; University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América;Fil: Leuchter, Richard K. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América;Fil: Quintero, Rafael. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América;Fil: Kozman, Maggie. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América;Fil: Rodríguez, José A.. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América; University of California. The Molecular Biology Institute; Estados Unidos de América;Fil: Ortiz-Sánchez, E. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América; Biomedical Research in Cancer. Basic Research Division. National Institute of Cancerology; Mexico.;Fil: Martínez-Maza, Otonel. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América;Fil: Schultes, Brigit C.. Advanced Immune Therapeutics; Estados Unidos de América;Fil: Nicodemus Christopher. Advanced Immune Therapeutics; Estados Unidos de América;Fil: Penichet, Manuel. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América; University of California. The Molecular Biology Institute; Estados Unidos de América

    Dual threshold diode based on the superconductor-to-insulator transition in ultrathin TiN filmss

    Get PDF
    We investigate transport properties of superconducting TiN films in the vicinity of the superconductor-insulator transition (SIT). We show that the current-voltage (I-V) characteristics are mirror-symmetric with respect to the SIT and can be switched to each other by the applied magnetic field. In both superconducting and insulating states, the low-temperature I-V characteristics have pronounced diode-like threshold character, demonstrating voltage/current jumps over several orders of magnitude at the corresponding critical current or threshold voltage. We have found that for both states, the theory developed for Josephson junction arrays offers a quantitative description of the experimental results

    Magnetic, electrical, thermal transport, and thermoelectric proberties of the ... and ... complex metallic alloy phases in the Al-Pd-Mn system

    Get PDF
    The Al-Pd-Mn system of intermetallics contains complex metallic alloy (CMA) phases, whose crystal structures are based on giant unit cells comprising up to more than a thousand atoms per cell. We performed investigation of the magnetic, electrical, and thermal transport and thermoelectric properties of the xi(') phase and the related Psi phase on single-crystalline samples grown by the Bridgman technique. The samples are diamagnets with a tiny paramagnetic Curie-like magnetization and an estimated fraction of magnetic Mn atoms about 100 ppm. The electrical resistivity between 300 and 4 K exhibits a temperature variation of less than 2%. The origin of this temperature-compensated resistivity is analyzed in terms of the spectral conductivity model. The thermal conductivity of the samples is small and can be described by the sum of the electronic and lattice contributions, which are of comparable size at room temperature. The lattice contribution can be reproduced by the sum of the Debye term (long-wavelength phonons) and the term due to hopping of localized vibrations. The thermoelectric power is small and negative, compatible with a low concentration of electrons as the majority charge carriers. The studied physical properties of the giant-unit-cell CMA phases in the Al-Pd-Mn system are in many respects intermediate between those of metals or simple intermetallics and quasicrystals, suggesting that both the polytetrahedral local atomic order and the large-scale periodicity influence the physical properties of the material

    Cancer vaccines: Enhanced immunogenic modulation through therapeutic combinations

    No full text
    Therapeutic cancer vaccines have gained significant popularity in recent years as new approaches for specific oncologic indications emerge. Three therapeutic cancer vaccines are FDA approved and one is currently approved by the EMA as monotherapy with modest treatment effects. Combining therapeutic cancer vaccines with other treatment modalities like radiotherapy (RT), hormone therapy, immunotherapy, and/or chemotherapy have been investigated as a means to enhance immune response and treatment efficacy. There is growing preclinical and clinical data that combination of checkpoint inhibitors and vaccines can induce immunogenic intensification with favorable outcomes. Additionally, novel methods for identifying targetable neoantigens hold promise for personalized vaccine development. In this article, we review the rationale for various therapeutic combinations, clinical trial experiences, and future directions. We also highlight the most promising developments that could lead to approval of novel therapeutic cancer vaccines
    corecore