716 research outputs found

    Alien Registration- Bilodeau, Marie F. (Lewiston, Androscoggin County)

    Get PDF
    https://digitalmaine.com/alien_docs/30389/thumbnail.jp

    A-site- and/or B-site-modified PbZrTiO3 materials and (Pb, Sr, Ca, Ba, Mg) (Zr, Ti, Nb, Ta)O3 films having utility in ferroelectric random access memories and high performance thin film microactuators

    Get PDF
    A modified PbZrTiO.sub.3 perovskite crystal material thin film, wherein the PbZrTiO.sub.3 perovskite crystal material includes crystal lattice A-sites and B-sites at least one of which is modified by the presence of a substituent selected from the group consisting of (i) A-site substituents consisting of Sr, Ca, Ba and Mg, and (ii) B-site substituents selected from the group consisting of Nb and Ta. The perovskite crystal thin film material may be formed by liquid delivery MOCVD from metalorganic precursors of the metal components of the thin film, to form PZT and PSZT, and other piezoelectric and ferroelectric thin film materials. The thin films of the invention have utility in non-volatile ferroelectric memory devices (NV-FeRAMs), and in microelectromechanical systems (MEMS) as sensor and/or actuator elements, e.g., high speed digital system actuators requiring low input power levels

    A-SITE-AND/OR B-SITE-MODIFIED PBZRTIO3 MATERIALS AND (PB, SR, CA, BA, MG) (ZR, TI,NB, TA)O3 FILMS HAVING UTILITY IN FERROELECTRIC RANDOM ACCESS MEMORIES AND HIGH PERFORMANCE THIN FILM MICROACTUATORS

    Get PDF
    A modified PbZrTiO.sub.3 perovskite crystal material thin film, wherein the PbZrTiO.sub.3 perovskite crystal material includes crystal lattice A-sites and B-sites at least one of which is modified by the presence of a substituent selected from the group consisting of (i) A-site substituents consisting of Sr, Ca, Ba and Mg, and (ii) B-site substituents selected from the group consisting of Nb and Ta. The perovskite crystal thin film material may be formed by liquid delivery MOCVD from metalorganic precursors of the metal components of the thin film, to form PZT and PSZT, and other piezoelectric and ferroelectric thin film materials. The thin films of the invention have utility in non-volatile ferroelectric memory devices (NV-FeRAMs), and in microelectromechanical systems (MEMS) as sensor and/or actuator elements, e.g., high speed digital system actuators requiring low input power levels

    Origin and implications of the observed rhombohedral phase in nominally tetragonal Pb(Zr\u3csub\u3e0.35\u3c/sub\u3eTi\u3csub\u3e0.65\u3c/sub\u3e)O\u3csub\u3e3\u3c/sub\u3e thin films

    Get PDF
    The structural and electrical properties of Pb(Zr0.35Ti0.65)O3 (PZT) thin films ranging in thickness from 700 to 4000 Å have been investigated. These (001)/(100)-textured films were grown by metalorganic chemical vapor deposition on (111)-textured Ir bottom electrodes. It was observed that, in the as-deposited state, the thinnest PZT films are rhombohedral even though bulk PZT of this composition should be tetragonal. Thicker films have a layered structure with tetragonal PZT at the surface and rhombohedral PZT at the bottom electrode interface. In this article we investigate the origin of this structure and its effect of the ferroelectric and dielectric properties of PZT capacitors. It has been suggested that thin films stresses can affect the phase stability regions of single domain PZT. This possibility has been investigated by piezoresponse microscopy and thin film stress measurements. In the as-deposited state the majority of PZT grains contain a single ferroelastic domain, whereas after a high temperature anneal, a large fraction of the grains contain several ferroelastic domains. Wafer curvature measurements in combination with x-ray diffraction stress measurements in the Ir bottom electrode showed that the as-deposited PZT films are, within experimental error, stress free at room temperature. Landau–Ginbzurg–Devonshire formalism was used to explain the origin of the rhombohedral phase as a result of substrate constraint on single domain PZT grains. Annealing was found to affect the relative volume fractions of the rhombohedral and tetragonal phases and the electrical properties of PZT films. Intermediate temperature anneals increased the volume fraction of the rhombohedral phase and the coercive field extracted from the polarization-electric field hysteresis loops. After a high temperature anneal (650 °C) the majority of the grains transformed into a polydomain state, decreasing the volume fraction of the rhombohedral phase and the coercive field. If the high temperature anneal was performed after deposition of the top electrode, the coercive field became independent of the PZT thickness

    Early quantitative coronary angiography of saphenous vein grafts for coronary artery bypass grafting harvested by means of open versus endoscopic saphenectomy: a prospective randomized trial

    Get PDF
    AbstractObjectiveEndoscopic saphenectomy is associated with a decreased incidence of wound complications without an increase in histologic trauma or endothelial dysfunction in published reports. Concern remains about the patency of saphenous vein grafts harvested endoscopically and the development of early intimal hyperplasia. The purpose of this study was to compare early quantitative coronary analysis of saphenous vein grafts used for coronary artery bypass grafting harvested with the open versus endoscopic techniques.MethodsForty patients undergoing primary coronary artery bypass grafting surgery with at least 1 saphenous vein graft were randomized preoperatively to open versus endoscopic saphenectomy with bipolar cauterization of side branches. Quantitative coronary angiography was performed a mean of 3 months (range, 1-9 months) after the operation.ResultsThere was no statistically significant difference in the patency rates of internal thoracic artery grafts between the open and endoscopic groups and no statistically significant difference in the patency rates of saphenous vein grafts between both groups (85.2% vs 84.4%, P = .991). Quantitative coronary angiography showed no difference in graft stenosis (≥50% of the internal diameter of the graft) in the body of the saphenous vein grafts in the open versus endoscopic saphenectomy groups (3.7% vs 0%, P = .280).ConclusionAngiographic appearance and patency rates of saphenous vein grafts harvested with the endoscopic technique are similar to those of saphenous vein grafts harvested with the open technique. These results support the use of endoscopic saphenectomy because of the known lower incidence of wound and infectious complications and superior functional results

    Automated CO2 and CH4 monitoring system for continuous estimation of degassing related to hydropower

    Get PDF
    Reliable measurement of greenhouse gas emissions from reservoirs is essential for estimating the carbon footprint of the hydropower industry. Among the different emission pathways, degassing downstream of the turbines and spillway is poorly documented mainly because of the safety stakes related to sampling up and downstream the power plants. The alternative being to sample the water from the turbine inside the station, this study aimed to assemble a custom automated CO2 and CH4 monitoring system (SAGES), especially designed for long-term surveys in hydropower facilities, with a special focus on low maintenance requirements. The SAGES combines infrared and laser technologies with a modular programming approach and run with a specifically designed plexiglass equilibration system (PES) that maintain a permanent headspace and avoid clogging by suspended solids. Although the SAGES is based on commercially available devices, it is the first time they are combined and used with the gas equilibrator. To ensure the reliability of the mounting and to control the quality of the readings, the system was tested in laboratory prior to its installation in generating stations. SAGES and PES performances were compared with those of generic devices available on the market although less adapted to the specific deployments targeted. The SAGES gas partial pressure measurements were accurate and linear in the entire range tested: 0 to 5,000 ppm for pCO2 and 0 to 600 and 10,000 ppm for pCH4. Gas PP measurements were comparable to the reference CO2/CH4 sensor and there was no drift during long term deployment. The SAGES/PES installed in 2021 in cascading generating stations of the Romaine complex collected more than 28,000 data points over a 10-month period and required only two maintenances. Results show that the SAGES is a reliable tool that provide long-term CO2 and CH4 dataset in generating stations while requiring minimal energy, care and maintenance. The data collected in turbine water and the recent use of the SAGES in peat land by a collaborative team demonstrate how the SAGES systems can efficiently contribute to the understanding of reservoir carbon cycles

    Unbalanced dissimilar-fibre Mach-Zehnder interferometer: application as filter

    Get PDF
    An unbalanced Mach-Zehnder interferometer made using dissimilar-fibre fused taper couplers is proposed for filtering applications. The all-fibre device is compact, rugged, simple to make and provides extended control and flexibility for the design of various types of filters

    Derivation of Del180 from sediment core log data\u27 Implications for millennial-scale climate change in the Labrador Sea

    Get PDF
    Sediment core logs from six sediment cores in the Labrador Sea show millennial-scale climate variability during the last glacial by recording all Heinrich events and several major Dansgaard-Oeschger cycles. The same millennial-scale climate change is documented for surface water δ18O records of Neogloboquadrina pachyderma (left coiled); hence the surface water δ18O record can be derived from sediment core logging by means of multiple linear regression, providing a paleoclimate proxy record at very high temporal resolution (70 years). For the Labrador Sea, sediment core logs contain important information about deepwater current velocities and also reflect the variable input of ice-rafted debris from different sources as inferred from grain-size analysis, the relation of density and P wave velocity, and magnetic susceptibility. For the last glacial, faster deepwater currents, which correspond to highs in sediment physical properties, occurred during iceberg discharge and lasted from several centuries to a few millennia. Those enhanced currents might have contributed to increased production of intermediate waters during times of reduced production of North Atlantic Deep Water. Hudson Strait might have acted as a major supplier of detrital carbonate only during lowered sea level (greater ice extent). During coldest atmospheric temperatures over Greenland, deepwater currents increased during iceberg discharge in the Labrador Sea, then surface water freshened shortly thereafter, while the abrupt atmospheric temperature rise happened after a larger time lag of ≥ 1 kyr. The correlation implies a strong link and common forcing for atmosphere, sea surface, and deep water during the last glacial at millennial timescales but decoupling at orbital timescales

    Influence of Alkali-Silica reaction (ASR) on aggregate interlock and shear-friction behavior of reinforced concrete members

    Get PDF
    Alkali-silica reaction (ASR) is one of the most damaging mechanisms affecting concrete structures worldwide. ASR effects on the durability and serviceability of damaged concrete are widely known and fairly well understood. However, the structural implications are still unclear, and a number of contradictory data are found in the literature, especially regarding shear behavior. The influence of ASR distressed reinforced concrete on aggregate interlock is presented in this paper. Push-off specimens having different transverse reinforcement ratios were fabricated with ASR reactive coarse aggregates. The specimens were monitored over time and displayed different levels of expansion. Results indicated that ASR-induced expansion and damage were affected by the transverse reinforcement ratio. However, little to no aggregate interlock reduction was observed on ASR-affected specimens up to moderate expansion levels (about 0.12%). It was found that there were two controlling and competing mechanisms that affected aggregate interlock for ASR-affected specimens: the beneficial effects of chemical prestressing and the detrimental ASR-induced damage
    • …
    corecore