19 research outputs found

    A phase I trial to assess the pharmacology of the new oestrogen receptor antagonist fulvestrant on the endometrium in healthy postmenopausal volunteers

    Get PDF
    While tamoxifen use is associated with clear benefits in the treatment of hormone-sensitive breast cancer, it also exhibits partial oestrogen agonist activity that is associated with adverse events, including endometrial cancer. Fulvestrant (‘Faslodex’) is a new oestrogen receptor antagonist that downregulates the oestrogen receptor and has no known agonist effect. This single-centre, double-blind, randomised, parallel-group trial was conducted to determine the direct effects of fulvestrant on the female endometrium when given alone and in combination with the oestrogen, ethinyloestradiol. Following a 14-day, pretrial screening period, 30 eligible postmenopausal volunteers were randomised to receive fulvestrant 250 mg, fulvestrant 125 mg or matched placebo administered as a single intramuscular injection. Two weeks postinjection, volunteers received 2-weeks concurrent exposure to ethinyloestradiol 20 μg day−1. Endometrial thickness was measured before and after the 14-day screening period with further measurements predose (to confirm a return to baseline) and on days 14, 28 and 42 post-treatment with fulvestrant. Pharmacokinetic and safety assessments were performed throughout the trial. Fulvestrant at a dose of 250 mg significantly (P=0.0001) inhibited the oestrogen-stimulated thickening of the endometrium compared with placebo. Neither the 125 mg nor 250 mg doses of fulvestrant demonstrated oestrogenic effects on the endometrium over the initial 14-day assessment period. Fulvestrant was well tolerated and reduced the incidence of ethinyloestradiol-related side effects. At the same dose level that is being evaluated in clinical trials of postmenopausal women with advanced breast cancer, fulvestrant (250 mg) is an antioestrogen with no evidence of agonist activity in the endometrium of healthy postmenopausal women

    Synthesis and Identification of Biologically Active Mono-Labelled FITC-Insulin Conjugate

    No full text
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Fluorescently labelling proteins such as insulin have wide ranging applications in a pharmaceutical research and drug delivery. Human insulin (Actrapid®) was labelled with fluorescein isothiocyanate (FITC) and the synthesised conjugate identified using reverse phase high performance liquid chromatography (RP-HPLC) on a C18 column and a gradient method with mobile phase A containing 0.1% trifluoroacetic acid (TFA) in Millipore water and mobile phase B containing 90% Acetonitrile, 10% Millipore water and 0.1% TFA. Syntheses were carried out at varying reaction times between 4 and 20 h. Mono-labelled FITC-insulin conjugate was successfully synthesised with labelling at the B1 position on the insulin chain using a molar ratio of 2:1 (FITC:insulin) at a reaction time of 18 h and confirmed by electrospray mass spectroscopy. Reactions were studied across a pH range of 7–9.8 and the quantities switch from mono-labelled to di-labelled FITC-insulin conjugates at a reaction time of 2 h (2:1 molar ratio) at pH > 8. The conjugates isolated from the studies had biological activities in comparison to native insulin of 99.5% monoB1, 78% monoA1, 51% diA1B1 and 0.06% triA1B1B29 in HUVEC cells by examining AKT phosphorylation levels. MonoB1 FITC-insulin conjugate was also compared to native insulin by examining cell surface GLUT4 in C2C12 skeletal muscle cells. No significant difference in the cellular response was observed for monoB1 produced in-house compared to native insulin. Therefore mono-labelled FITC-insulin at the B1 position showed similar biological activity as native insulin and can potentially be used for future biomedical applications
    corecore