22 research outputs found

    Inducible Presynaptic Glutamine Transport Supports Glutamatergic Transmission at the Calyx of Held Synapse

    Get PDF
    he mechanisms by which the excitatory neurotransmitter glutamate is recycled at synapses are currently unknown. By examining the functional expression of plasma membrane transporters at presynaptic terminals, we aim to elucidate some of the mechanisms of glutamate recycling. Using whole-cell voltage-clamp recordings from rat calyx of Held presynaptic terminals, our data show, for the first time, that the glutamate precursor glutamine causes the direct activation of an electrogenic, sodium-dependent presynaptic transporter, which supplies glutamine for generation of presynaptic glutamate and helps sustain synaptic transmission. Interestingly, the functional expression of this transporter at the presynaptic plasma membrane is dynamically controlled by electrical activity of the terminal, indicating that uptake of neurotransmitter precursors is controlled by the demand at an individual terminal. Induction of the transporter current is calcium-dependent and inhibited by botulinum neurotoxin C, demonstrating the involvement of SNARE-dependent exocytosis in inserting transporters into the plasma membrane when the terminal is active. Conversely, inactivity of the presynaptic terminal results in removal of transporters via clathrin-mediated endocytosis. To investigate whether the presynaptic glutamine transporter supplies the precursor for generating the synaptically released glutamate, we measured miniature EPSCs to assess vesicular glutamate content. When the presynaptic glutamate pool was turned over by synaptic activity, inhibiting the presynaptic glutamine transporters with MeAIB reduced the miniature EPSC amplitude significantly. This demonstrates that presynaptic glutamine transport is centrally involved in the production of glutamate and assists in maintaining excitatory neurotransmission. © 2013 the authors

    5-HT2C Receptor Agonist Anorectic Efficacy Potentiated by 5-HT1B Receptor Agonist Coapplication: An Effect Mediated via Increased Proportion of Pro-Opiomelanocortin Neurons Activated

    Get PDF
    An essential component of the neural network regulating ingestive behavior is the brain 5-hydroxytryptamine2C receptor (5-HT2CR), agonists of which suppress food intake and were recently approved for obesity treatment by the US Food and Drug Administration. 5-HT2CR-regulated appetite is mediated primarily through activation of hypothalamic arcuate nucleus (ARC) pro-opiomelanocortin (POMC) neurons, which are also disinhibited through a 5-HT1BR-mediated suppression of local inhibitory inputs. Here we investigated whether 5-HT2CR agonist anorectic potency could be significantly enhanced by coadministration of a 5-HT1BR agonist and whether this was associated with augmented POMC neuron activation on the population and/or single-cell level. The combined administration of subanorectic concentrations of 5-HT2CR and 5-HT1BR agonists produced a 45% reduction in food intake and significantly greater in vivo ARC neuron activation in mice. The chemical phenotype of activated ARC neurons was assessed by monitoring agonist-induced cellular activity via calcium imaging in mouse POMC-EGFP brain slices, which revealed that combined agonists activated significantly more POMC neurons (46%) compared with either drug alone (~25% each). Single-cell electrophysiological analysis demonstrated that 5-HT2CR/5-HT1BR agonist coadministration did not significantly potentiate the firing frequency of individual ARC POMC-EGFP cells compared with agonists alone. These data indicate a functional heterogeneity ofARCPOMCneurons by revealing distinct subpopulations of POMC cells activated by 5-HT2CRs and disinhibited by 5-HT1BRs. Therefore, coadministration of a 5-HT1BR agonist potentiates the anorectic efficacy of 5-HT2CR compounds by increasing the number, but not the magnitude, of activated ARC POMC neurons and is of therapeutic relevance to obesity treatment. © 2013 the authors

    SNAT3-mediated glutamine transport in perisynaptic astrocytes in situ is regulated by intracellular sodium

    Get PDF
    The release of glutamine from astrocytes adjacent to synapses in the central nervous system is thought to play a vital role in the mechanism of glutamate recycling and is therefore important for maintaining excitatory neurotransmission. Here we investigate the nature of astrocytic membrane transport of glutamine in rat brainstem slices, using electrophysiological recording and fluorescent imaging of pHi and Na1i. Glutamine application to perisynaptic astrocytes induced a membrane current, caused by activation of system A (SA) family transporters. A significant electroneutral component was also observed, which was mediated by the system N (SN) family transporters. This response was stimulated by glutamine (KM of 1.57 mM), histidine, and asparagine, but not by leucine or serine, indicating activation of the SNAT3 isoform of SN. We hypothesized that increasing the [Na1]i would alter the SNAT3 transporter equilibrium, thereby stimulating glutamine release. In support of this hypothesis, we show that SNAT3 transport can be driven by changing cation concentration and that manipulations to raise [Na1]i (activation of excitatory amino acid transporters (EAATs), SA transporters or AMPA receptors) all directly influence SNAT3 transport rate. A kinetic model of glutamine fluxes is presented, which shows that EAAT activation causes the release of glutamine, driven mainly by the increased [Na1]i. These data demonstrate that SNAT3 is functionally active in perisynaptic astrocytes in situ. As a result, astrocytic Na1i signaling, as would be stimulated by neighboring synaptic activity, has the capacity to stimulate astrocytic glutamine release to support glutamate recycling.National Health and Medical Research Council of Australia, Grant Number: APP110585

    PKC-Mediated Modulation of Astrocyte SNAT3 Glutamine Transporter Function at Synapses in Situ

    Get PDF
    Astrocytes are glial cells that have an intimate physical and functional association with synapses in the brain. One of their main roles is to recycle the neurotransmitters glutamate and gamma-aminobutyric acid (GABA), as a component of the glutamate/GABA-glutamine cycle. They perform this function by sequestering neurotransmitters and releasing glutamine via the neutral amino acid transporter SNAT3. In this way, astrocytes regulate the availability of neurotransmitters and subsequently influence synaptic function. Since many plasma membrane transporters are regulated by protein kinase C (PKC), the aim of this study was to understand how PKC influences SNAT3 glutamine transport in astrocytes located immediately adjacent to synapses. We studied SNAT3 transport by whole-cell patch-clamping and fluorescence pH imaging of single astrocytes in acutely isolated brainstem slices, adjacent to the calyx of the Held synapse. Activation of SNAT3-mediated glutamine transport in these astrocytes was reduced to 77 ± 6% when PKC was activated with phorbol 12-myristate 13-acetate (PMA). This effect was very rapid (within ~20 min) and eliminated by application of bisindolylmaleimide I (Bis I) or 7-hydroxystaurosporine (UCN-01), suggesting that activation of conventional isoforms of PKC reduces SNAT3 function. In addition, cell surface biotinylation experiments in these brain slices show that the amount of SNAT3 in the plasma membrane is reduced by a comparable amount (to 68 ± 5%) upon activation of PKC. This indicates a role for PKC in dynamically controlling the trafficking of SNAT3 transporters in astrocytes in situ. These data demonstrate that PKC rapidly regulates the astrocytic glutamine release mechanism, which would influence the glutamine availability for adjacent synapses and control levels of neurotransmission.This work is supported by the National Health and Medical Research Council of Australia (grant 1105857 to Brian Billups and Stefan Bröer) and the Australian Research Council (grant DP180101702 to Stefan Bröer and Brian Billups)

    5-HT2C receptor agonist anorectic efficacy potentiated by 5-HT1B receptor agonist coapplication:an effect mediated via increased proportion of pro-opiomelanocortin neurons activated

    Get PDF
    An essential component of the neural network regulating ingestive behavior is the brain 5-hydroxytryptamine2C receptor (5-HT2CR), agonists of which suppress food intake and were recently approved for obesity treatment by the US Food and Drug Administration. 5-HT2CR-regulated appetite is mediated primarily through activation of hypothalamic arcuate nucleus (ARC) pro-opiomelanocortin (POMC) neurons, which are also disinhibited through a 5-HT1BR-mediated suppression of local inhibitory inputs. Here we investigated whether 5-HT2CR agonist anorectic potency could be significantly enhanced by coadministration of a 5-HT1BR agonist and whether this was associated with augmented POMC neuron activation on the population and/or single-cell level. The combined administration of subanorectic concentrations of 5-HT2CR and 5-HT1BR agonists produced a 45% reduction in food intake and significantly greater in vivo ARC neuron activation in mice. The chemical phenotype of activated ARC neurons was assessed by monitoring agonist-induced cellular activity via calcium imaging in mouse POMC-EGFP brain slices, which revealed that combined agonists activated significantly more POMC neurons (46%) compared with either drug alone (∼25% each). Single-cell electrophysiological analysis demonstrated that 5-HT2CR/5-HT1BR agonist coadministration did not significantly potentiate the firing frequency of individual ARC POMC-EGFP cells compared with agonists alone. These data indicate a functional heterogeneity of ARC POMC neurons by revealing distinct subpopulations of POMC cells activated by 5-HT2CRs and disinhibited by 5-HT1BRs. Therefore, coadministration of a 5-HT1BR agonist potentiates the anorectic efficacy of 5-HT2CR compounds by increasing the number, but not the magnitude, of activated ARC POMC neurons and is of therapeutic relevance to obesity treatment

    Improved Tool for Fingerspelling Recognition

    Get PDF
    Conference proceedings from the Technology and Persons with Disabilities Conference-2006. California State University at Northridge, Los Angeles, CA March 20-25, 2006

    Properties of glutamate uptake in glial cells

    Get PDF
    Glutamate uptake carriers are ultimately responsible for terminating the synaptic action of glutamate by sequestering it into neurons and glia. Glutamate transport is accompanied by the co-transport of two sodium ions and the countertransport of one potassium and one hydroxide ion, so it is electrogenic, carrying net positive charge inwards with each glutamate anion. The ionic changes occurring in pathological conditions like brain ischaemia cause glutamate uptake carriers to run backwards, pumping glutamate out of cells. Since glutamate uptake involves the movement of a hydroxide ion, and rapid pH changes occur during brain ischaemia, the effects of changing internal and external pH on forward and reversed uptake were studied. Forward and reversed glutamate transport were studied by whole-cell voltage-clamping glial cells (Muller cells) isolated from the salamander retina. Glutamate release by reversed uptake was also monitored using isolated rat cerebellar neurons as glutamate sensors. Internal alkalinization promoted, and external alkalinization inhibited glutamate uptake, probably by altering the gradient for hydroxide counter-transport. External acidification inhibited uptake, by decreasing the carriers' sodium affinity. Glutamate release by reversed uptake was inhibited by external acidification. This may be neuroprotective during anoxia, since the rise in external glutamate concentration is neurotoxic. Cloned mammalian glutamate uptake carriers are known to have an integral anion conductance. This was also shown to be the case for the salamander transporter, and the gating of this conductance was studied. It was activated by either forward or reversed glutamate uptake. Furthermore, cycling of the carrier was not an absolute requirement for channel opening. When cycling was inhibited, binding of glutamate and sodium to the internal and external carrier surface was sufficient to activate the anion conductance. Anion flow through the conductance was shown not to be coupled to glutamate transport, while the movement of hydroxide on the transporter is coupled to glutamate transport

    Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses

    Get PDF
    Beyond their role in generating ATP, mitochondria have a high capacity to sequester calcium. The interdependence of these functions and limited access to presynaptic compartments makes it difficult to assess the role of sequestration in synaptic transmission. We addressed this important question using the calyx of Held as a model glutamatergic synapse by combining patch-clamp with a novel mitochondrial imaging method. Presynaptic calcium current, mitochondrial calcium concentration ([Ca2+]mito, measured using rhod-2 or rhod-FF), cytoplasmic calcium concentration ([Ca2+]cyto, measured using fura-FF), and the postsynaptic current were monitored during synaptic transmission. Presynaptic [Ca2+]cytorose to 8.5 ± 1.1 μM and decayed rapidly with a time constant of 45 ± 3 msec; presynaptic [Ca2+]mito also rose rapidly to >5 μM but decayed slowly with a half-time of 1.5 ± 0.4 sec. Mitochondrial depolarization with rotenone and carbonyl cyanidep-trifluoromethoxyphenylhydrazone abolished mitochondrial calcium rises and slowed the removal of [Ca2+]cyto by 239 ± 22%. Using simultaneous presynaptic and postsynaptic patch clamp, combined with presynaptic mitochondrial and cytoplasmic imaging, we investigated the influence of mitochondrial calcium sequestration on transmitter release. Depletion of ATP to maintain mitochondrial membrane potential was blocked with oligomycin, and ATP was provided in the patch pipette. Mitochondrial depolarization raised [Ca2+]cyto and reduced transmitter release after short EPSC trains (100 msec, 200 Hz); this effect was reversed by raising mobile calcium buffering with EGTA. Our results suggest a new role for presynaptic mitochondria in maintaining transmission by accelerating recovery from synaptic depression after periods of moderate activity. Without detectable thapsigargin-sensitive presynaptic calcium stores, we conclude that mitochondria are the major organelle regulating presynaptic calcium at central glutamatergic terminals
    corecore