300 research outputs found

    Mixed Quantum/Classical Approach for Description of Molecular Collisions in Astrophysical Environments

    Get PDF
    An efficient and accurate mixed quantum/classical theory approach for computational treatment of inelastic scattering is extended to describe collision of an atom with a general asymmetric-top rotor polyatomic molecule. Quantum mechanics, employed to describe transitions between the internal states of the molecule, and classical mechanics, employed for description of scattering of the atom, are used in a self-consistent manner. Such calculations for rotational excitation of HCOOCH3 in collisions with He produce accurate results at scattering energies above 15 cm–1, although resonances near threshold, below 5 cm–1, cannot be reproduced. Importantly, the method remains computationally affordable at high scattering energies (here up to 1000 cm–1), which enables calculations for larger molecules and at higher collision energies than was possible previously with the standard full-quantum approach. Theoretical prediction of inelastic cross sections for a number of complex organic molecules observed in space becomes feasible using this new computational tool

    Genome-wide identification and functional analysis of Apobec-1-mediated C-to-U RNA editing in mouse small intestine and liver

    Get PDF
    BackgroundRNA editing encompasses a post-transcriptional process in which the genomically templated sequence is enzymatically altered and introduces a modified base into the edited transcript. Mammalian C-to-U RNA editing represents a distinct subtype of base modification, whose prototype is intestinal apolipoprotein B mRNA, mediated by the catalytic deaminase Apobec-1. However, the genome-wide identification, tissue-specificity and functional implications of Apobec-1-mediated C-to-U RNA editing remain incompletely explored.ResultsDeep sequencing, data filtering and Sanger-sequence validation of intestinal and hepatic RNA from wild-type and Apobec-1-deficient mice revealed 56 novel editing sites in 54 intestinal mRNAs and 22 novel sites in 17 liver mRNAs, all within 3' untranslated regions. Eleven of 17 liver RNAs shared editing sites with intestinal RNAs, while 6 sites are unique to liver. Changes in RNA editing lead to corresponding changes in intestinal mRNA and protein levels for 11 genes. Analysis of RNA editing in vivo following tissue-specific Apobec-1 adenoviral or transgenic Apobec-1 overexpression reveals that a subset of targets identified in wild-type mice are restored in Apobec-1-deficient mouse intestine and liver following Apobec-1 rescue. We find distinctive polysome profiles for several RNA editing targets and demonstrate novel exonic editing sites in nuclear preparations from intestine but not hepatic apolipoprotein B RNA. RNA editing is validated using cell-free extracts from wild-type but not Apobec-1-deficient mice, demonstrating that Apobec-1 is required.ConclusionsThese studies define selective, tissue-specific targets of Apobec-1-dependent RNA editing and show the functional consequences of editing are both transcript- and tissue-specific

    Flavor network and the principles of food pairing

    Get PDF
    The cultural diversity of culinary practice, as illustrated by the variety of regional cuisines, raises the question of whether there are any general patterns that determine the ingredient combinations used in food today or principles that transcend individual tastes and recipes. We introduce a flavor network that captures the flavor compounds shared by culinary ingredients. Western cuisines show a tendency to use ingredient pairs that share many flavor compounds, supporting the so-called food pairing hypothesis. By contrast, East Asian cuisines tend to avoid compound sharing ingredients. Given the increasing availability of information on food preparation, our data-driven investigation opens new avenues towards a systematic understanding of culinary practice.Comment: 39 pages, 15 figure

    Retarding field energy analyser ion current calibration and transmission

    Get PDF
    International audienceAccurate measurement of ion current density and ion energy distributions (IED) is often critical for plasma processes in both industrial and research settings. Retarding field energy analyzers (RFEA) have been used to measure IEDs because they are considered accurate, relatively simple and cost effective. However, their usage for critical measurement of ion current density is less common due to difficulties in estimating the proportion of incident ion current reaching the current collector through the RFEA retarding grids. In this paper an RFEA has been calibrated to measure ion current density from an ion beam at pressures ranging from 0.5 to 50.0 mTorr. A unique method is presented where the currents generated at each of the retarding grids and the RFEA upper face are measured separately, allowing the reduction in ion current to be monitored and accounted for at each stage of ion transit to the collector. From these I-V measurements a physical model is described. Subsequently, a mathematical description is extracted which includes parameters to account for grid transmissions, upper face secondary electron emission and collisionality. Pressure-dependant calibration factors can be calculated from least mean square best fits of the collector current to the model allowing quantitative measurement of ion current density

    A sinter resistant Co Fischer-Tropsch catalyst promoted with Ru and supported on titania encapsulated by mesoporous silica

    Get PDF
    One of the pathways responsible for the deactivation of Fischer-Tropsch catalysts is the loss of active metal surface area due to nanoparticle agglomeration. To combat this effect efforts have been made to increase the interaction between the metal nanoparticles and the support using materials like silica. In this study, the supported metal particles were covered with a highly porous layer of silica to stabilize the Co nanoparticles on a titania support both during reduction and under reaction conditions. Co3O4 nanoparticles (size range: 8–12 nm) supported on titania were stabilized by coating them with a thin layer of mesoporous silica ( ∼ 4 nm) to make Fischer-Tropsch catalysts that are less prone to sintering (Co/TiO2@mSiO2). To mitigate the strong metal support interactions brought about by the titania and silica a Ru promoter was loaded together with the cobalt nanoparticles onto the titania (CoRu/TiO2@mSiO2). Temperature programmed XRD studies on the evolution of the Co metal nanoparticles showed that there was no significant particle size growth under reduction conditions in the temperature range from 30 to 600 °C. Chemisorption studies following reduction under hydrogen at 350 °C and 450 °C gave results consistent with the in situ XRD data when compared to the Co/TiO2. Fischer-Tropsch synthesis on the Co/TiO2@mSiO2 and CoRu/TiO2@mSiO2 catalysts encapsulated inside the mesoporous silica shell exhibited good catalytic performance without any display of significant mass transport limitations that might arise due to a silica shell coating of the active sites. For these two catalysts the Fischer-Tropsch activity increased with reduction temperature without any significant negative changes in their selectivity due to sintering, while the activity on Co/TiO2 decreased due to Co nanoparticle sintering

    A Directed RNAi Screen Based on Larval Growth Arrest Reveals New Modifiers of C. elegans Insulin Signaling

    Get PDF
    Genes regulating Caenorhabditis elegans insulin/IGF signaling (IIS) have largely been identified on the basis of their involvement in dauer development or longevity. A third IIS phenotype is the first larval stage (L1) diapause, which is also influenced by asna-1, a regulator of DAF-28/insulin secretion. We reasoned that new regulators of IIS strength might be identified in screens based on the L1 diapause and the asna-1 phenotype. Eighty- six genes were selected for analysis by virtue of their predicted interaction with ASNA-1 and screened for asna-1-like larval arrest. ykt-6, mrps-2, mrps-10 and mrpl-43 were identified as genes which, when inactivated, caused larval arrest without any associated feeding defects. Several tests indicated that IIS strength was weaker and that insulin secretion was defective in these animals. This study highlights the role of the Golgi network and the mitochondria in insulin secretion and provides a new list of genes that modulate IIS in C. elegans

    Appointing Women to Boards: Is There a Cultural Bias?

    Get PDF
    Companies that are serious about corporate governance and business ethics are turning their attention to gender diversity at the most senior levels of business (Institute of Business Ethics, Business Ethics Briefing 21:1, 2011). Board gender diversity has been the subject of several studies carried out by international organizations such as Catalyst (Increasing gender diversity on boards: Current index of formal approaches, 2012), the World Economic Forum (Hausmann et al., The global gender gap report, 2010), and the European Board Diversity Analysis (Is it getting easier to find women on European boards? 2010). They all lead to reports confirming the overall relatively low proportion of women on boards and the slow pace at which more women are being appointed. Furthermore, the proportion of women on corporate boards varies much across countries. Based on institutional theory, this study hypothesizes and tests whether this variation can be attributed to differences in cultural settings across countries. Our analysis of the representation of women on boards for 32 countries during 2010 reveals that two cultural characteristics are indeed associated with the observed differences. We use the cultural dimensions proposed by Hofstede (Culture’s consequences: International differences in work-related values, 1980) to measure this construct. Results show that countries which have the greatest tolerance for inequalities in the distribution of power and those that tend to value the role of men generally exhibit lower representations of women on boards

    The Search for Gravitational Waves

    Full text link
    Experiments aimed at searching for gravitational waves from astrophysical sources have been under development for the last 40 years, but only now are sensitivities reaching the level where there is a real possibility of detections being made within the next five years. In this article a history of detector development will be followed by a description of current detectors such as LIGO, VIRGO, GEO 600, TAMA 300, Nautilus and Auriga. Preliminary results from these detectors will be discussed and related to predicted detection rates for some types of sources. Experimental challenges for detector design are introduced and discussed in the context of detector developments for the future.Comment: 21 pages, 7 figures, accepted J. Phys. B: At. Mol. Opt. Phy

    Long-term survival in patients with non-small cell lung cancer and synchronous brain metastasis treated with whole-brain radiotherapy and thoracic chemoradiation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brain metastases occur in 30-50% of Non-small cell lung cancer (NSCLC) patients and confer a worse prognosis and quality of life. These patients are usually treated with Whole-brain radiotherapy (WBRT) followed by systemic therapy. Few studies have evaluated the role of chemoradiotherapy to the primary tumor after WBRT as definitive treatment in the management of these patients.</p> <p>Methods</p> <p>We reviewed the outcome of 30 patients with primary NSCLC and brain metastasis at diagnosis without evidence of other metastatic sites. Patients were treated with WBRT and after induction chemotherapy with paclitaxel and cisplatin for two cycles. In the absence of progression, concurrent chemoradiotherapy for the primary tumor with weekly paclitaxel and carboplatin was indicated, with a total effective dose of 60 Gy. If disease progression was ruled out, four chemotherapy cycles followed.</p> <p>Results</p> <p>Median Progression-free survival (PFS) and Overall survival (OS) were 8.43 ± 1.5 and 31.8 ± 15.8 months, respectively. PFS was 39.5% at 1 year and 24.7% at 2 years. The 1- and 2-year OS rates were 71.1 and 60.2%, respectively. Three-year OS was significantly superior for patients with N0-N1 stage disease vs. N2-N3 (60 vs. 24%, respectively; Response rate [RR], 0.03; <it>p</it>= 0.038).</p> <p>Conclusions</p> <p>Patients with NSCLC and brain metastasis might benefit from treatment with WBRT and concurrent thoracic chemoradiotherapy. The subgroup of N0-N1 patients appears to achieve the greatest benefit. The result of this study warrants a prospective trial to confirm the benefit of this treatment.</p
    corecore