927 research outputs found

    DR-bearing T lymphocytes in thoracic duct lymph

    Get PDF
    T cells having DR antigens were shown to be present in high numbers in the thoracic duct lymph of patients undergoing long-term drainage. As drainage progresses the proportion of T DR cells in the lymph increases to levels as high as 70% at 6 weeks. These cells were demonstrated by showing that T cells isolated by sheep red cell rosetting were killed by the action of rabbit anti-B-cell sera and of HLA-DR antisera. The HLA-DR specificities found on the T cells corresponded with those on the patients’ B lymphocytes

    Subtle Cardiovascular Dysfunction in the Unilateral 6-Hydroxydopamine-Lesioned Rat

    Get PDF
    The present study evaluated whether the unilateral 6-hydroxydopamine (6-OHDA) model of Parkinson's disease produces autonomic deficits. Autonomic parameters were assessed by implanting a small radiofrequency telemetry device which measured heart rate variability (HRV), diurnal rhythms of heart rate (HR), core body temperature (cBT) and locomotor activity (LA). Rats then received 6-OHDA lesion or sham surgery. 6-OHDA lesioned rats exhibited head and body axis biases, defective sensorimotor function (“disengage” test), and prominent apomorphine rotation (all P < .05 versus controls). Diurnal rhythm of HR was lower for 6-OHDA lesioned rats (n = 8) versus controls (n = 6; P < .05). Whilst HR decreased similarly in both groups during the day, there was a greater decrease in HR for the 6-OHDA lesioned rats at night (by 38 b.p.m. relative to 17 b.p.m. for controls). LA and cBT did not differ between surgery groups. This study indicates the unilateral 6-OHDA model of PD shows subtle signs of cardiovascular autonomic dysfunction

    Accurate Calculations of Rotationally Inelastic Scattering Cross Sections Using Mixed Quantum/Classical Theory

    Get PDF
    For computational treatment of rotationally inelastic scattering of molecules, we propose to use the mixed quantum/classical theory, MQCT. The old idea of treating translational motion classically, while quantum mechanics is used for rotational degrees of freedom, is developed to the new level and is applied to Na + N2 collisions in a broad range of energies. Comparison with full-quantum calculations shows that MQCT accurately reproduces all, even minor, features of energy dependence of cross sections, except scattering resonances at very low energies. The remarkable success of MQCT opens up wide opportunities for computational predictions of inelastic scattering cross sections at higher temperatures and/or for polyatomic molecules and heavier quenchers, which is computationally close to impossible within the full-quantum framework

    Observations and predictions at CesrTA, and outlook for ILC

    Full text link
    In this paper, we will describe some of the recent experimental measurements [1, 2, 3] performed at CESRTA [4], and the supporting simulations, which probe the interaction of the electron cloud with the stored beam. These experiments have been done over a wide range of beam energies, emittances, bunch currents, and fill patterns, to gather sufficient information to be able to fully characterize the beam-electron-cloud interaction and validate the simulation programs. The range of beam conditions is chosen to be as close as possible to those of the ILC damping ring, so that the validated simulation programs can be used to predict the performance of these rings with regard to electroncloud- related phenomena. Using the new simulation code Synrad3D to simulate the synchrotron radiation environment, a vacuum chamber design has been developed for the ILC damping ring which achieves the required level of photoelectron suppression. To determine the expected electron cloud density in the ring, EC buildup simulations have been done based on the simulated radiation environment and on the expected performance of the ILC damping ring chamber mitigation prescriptions. The expected density has been compared with analytical estimates of the instability threshold, to verify that the ILC damping ring vacuum chamber design is adequate to suppress the electron cloud single-bunch head-tail instability.Comment: 11 pages, contribution to the Joint INFN-CERN-EuCARD-AccNet Workshop on Electron-Cloud Effects: ECLOUD'12; 5-9 Jun 2012, La Biodola, Isola d'Elba, Ital

    Mixed Quantum/Classical Approach for Description of Molecular Collisions in Astrophysical Environments

    Get PDF
    An efficient and accurate mixed quantum/classical theory approach for computational treatment of inelastic scattering is extended to describe collision of an atom with a general asymmetric-top rotor polyatomic molecule. Quantum mechanics, employed to describe transitions between the internal states of the molecule, and classical mechanics, employed for description of scattering of the atom, are used in a self-consistent manner. Such calculations for rotational excitation of HCOOCH3 in collisions with He produce accurate results at scattering energies above 15 cm–1, although resonances near threshold, below 5 cm–1, cannot be reproduced. Importantly, the method remains computationally affordable at high scattering energies (here up to 1000 cm–1), which enables calculations for larger molecules and at higher collision energies than was possible previously with the standard full-quantum approach. Theoretical prediction of inelastic cross sections for a number of complex organic molecules observed in space becomes feasible using this new computational tool

    Industrial path development in the UK space sector: processes of legitimacy building in the establishment of Space 2.0

    Get PDF
    This paper explores the processes behind legitimacy building and its role in new path creation and the path transformation or the ‘de-locking’ of an established industry. We use a mixed-methods approach and focus on the emergence of ‘New Space’ or Space 2.0 in the UK, a new-to-the-world industry, with radically different products and/or conventions. Legitimation of new product categories is essential to enable future adoption by regulators and consumers. Our findings suggest that this is not a linear process but involves interlayering, or complex feedback loops, between three distinct types of legitimacy building: regulatory, normative, and cognitive. Failure in some of these feedback loops, for example, problems with altering regulatory legitimacy, would prevent the formation of new industrial pathways with significant implications for the development of new-to-the-world and new-to-region industries
    corecore