829 research outputs found
The 2+1 flavor topological susceptibility from the asqtad action at 0.06 fm
We report new data for the topological susceptibility computed on 2+1 flavor
dynamical configurations with lattice spacing 0.06 fm, generated with the
asqtad action. The topological susceptibility is computed by HYP smearing and
compared with rooted staggered chiral perturbation theory as the pion mass goes
to zero. At 0.06 fm, the raw data is already quite close to the continuum
extrapolated values obtained from coarser lattices. These results provide a
further test of the asqtad action with rooted staggered flavors.Comment: 7 pages, 5 figures, talk presented at the XXV International Symposium
on Lattice Field Theory, July 30 - August 4, 2007, Regensburg, German
Defect configurations and dynamical behavior in a Gay-Berne nematic emulsion
To model a nematic emulsion consisting of a surfactant-coated water droplet
dispersed in a nematic host, we performed a molecular dynamics simulation of a
droplet immersed in a system of 2048 Gay-Berne ellipsoids in a nematic phase.
Strong radial anchoring at the surface of the droplet induced a Saturn ring
defect configuration, consistent with theoretical predictions for very small
droplets. A surface ring configuration was observed for lower radial anchoring
strengths, and a pair of point defects was found near the poles of the droplet
for tangential anchoring. We also simulated the falling ball experiment and
measured the drag force anisotropy, in the presence of strong radial anchoring
as well as zero anchoring strength.Comment: 17 pages, 15 figure
Topological susceptibility with the asqtad action
Chiral perturbation theory predicts that in quantum chromodynamics (QCD),
light dynamical quarks suppress the gauge-field topological susceptibility of
the vacuum. The degree of suppression depends on quark multiplicity and masses.
It provides a strong consistency test for fermion formulations in lattice QCD.
Such tests are especially important for staggered fermion formulations that
lack a full chiral symmetry and use the "fourth-root" procedure to achieve the
desired number of sea quarks. Over the past few years we have measured the
topological susceptibility on a large database of 18 gauge field ensembles,
generated in the presence of 2+1 flavors of dynamical asqtad quarks with up and
down quark masses ranging from 0.05 to 1 in units of the strange quark mass and
lattice spacings ranging from 0.045 fm to 0.12 fm. Our study also includes
three quenched ensembles with lattice spacings ranging from 0.06 to 0.12 fm. We
construct the topological susceptibility from the integrated point-to-point
correlator of the discretized topological charge density F-Fdual. To reduce its
variance, we model the asymptotic tail of the correlator. The continuum
extrapolation of our results for the topological susceptibility agrees nicely
at small quark mass with the predictions of lowest-order SU(3) chiral
perturbation theory, thus lending support to the validity of the fourth-root
procedure.Comment: 28 pp, 6 figs. Version 2 corrects some discussion, some numbers, and
some figures and adds some reference
Restriction of measles virus gene expression in acute and subacute encephalitis in Lewis rats
No abstract availabl
Theory of Banana Liquid Crystal Phases and Phase Transitions
We study phases and phase transitions that can take place in the newly
discovered banana (bow-shaped or bent-core) liquid crystal molecules. We show
that to completely characterize phases exhibited by such bent-core molecules a
third-rank tensor order parameter is necessary in addition to the
vector and the nematic (second-rank) tensor order parameters. We present an
exhaustive list of possible liquid phases, characterizing them by their
space-symmetry group and order parameters, and catalog the universality classes
of the corresponding phase transitions that we expect to take place in such
bent-core molecular liquid crystals. In addition to the conventional
liquid-crystal phases such as the nematic phase, we predict the existence of
novel liquid phases, including the spontaneously chiral nematic
and chiral polar phases, the orientationally-ordered but
optically isotropic tetrahedratic phase, and a novel nematic phase
with symmetry that is neither uniaxial nor biaxial. Interestingly, the
Isotropic-Tetrahedratic transition is {\em continuous} in mean-field theory,
but is likely driven first-order by thermal fluctuations. We conclude with a
discussion of smectic analogs of these phases and their experimental
signatures.Comment: 28 pgs. RevTex, 32 eps figures, submitted to Phys. Rev.
Transient transcriptional events in human skeletal muscle at the outset of concentric resistance exercise training
We sought to ascertain the time course of transcriptional events that occur in human skeletal muscle at the outset of resistance exercise (RE) training in RE naive individuals and determine whether the magnitude of response was associated with exercise-induced muscle damage. Sixteen RE naive men were recruited; eight underwent two sessions of 5 Ć 30 maximum isokinetic knee extensions (180Ā°/s) separated by 48 h. Muscle biopsies of the vastus lateralis, obtained from different sites, were taken at baseline and 24 h after each exercise bout. Eight individuals acted as nonexercise controls with biopsies obtained at the same time intervals. Transcriptional changes were assessed by microarray and protein levels of heat shock protein (HSP) 27 and Ī±B-crystallin in muscle cross sections by immunohistochemistry as a proxy measure of muscle damage. In control subjects, no probe sets were significantly altered (false discovery rate < 0.05), and HSP27 and Ī±B-crystallin protein remained unchanged throughout the study. In exercised subjects, significant intersubject variability following the initial RE bout was observed in the muscle transcriptome, with greatest changes occurring in subjects with elevated HSP27 and Ī±B-crystallin protein. Following the second bout, the transcriptome response was more consistent, revealing a cohort of probe sets associated with immune activation, the suppression of oxidative metabolism, and ubiquitination, as differentially regulated. The results reveal that the initial transcriptional response to RE is variable in RE naive volunteers, potentially associated with muscle damage and unlikely to reflect longer term adaptations to RE training. These results highlight the importance of considering multiple time points when determining the transcriptional response to RE and associated physiological adaptation
Bartonella spp. Transmission by Ticks Not Established
A review found no well-documented case of transmission by deer ticks
A Smooth Interface Method for Simulating Liquid Crystal Colloid Dispersions
A new method is presented for mesoscopic simulations of particle dispersions
in liquid crystal solvents. It allows efficient first-principle simulations of
the dispersions involving many particles with many-body interactions mediated
by the solvents. Demonstrations have been performed for the aggregation of
colloid dispersions in two-dimensional nematic and smectic-C* solvents
neglecting hydrodynamic effects, which will be taken into account in the near
future.Comment: 13 pages, 4 figure
Computer simulations of hard pear-shaped particles
We report results obtained from Monte Carlo simulations investi-
gating mesophase formation in two model systems of hard pear-shaped
particles. The first model considered is a hard variant of the trun-
cated Stone-Expansion model previously shown to form nematic and
smectic mesophases when embedded within a 12-6 Gay-Berne-like po-
tential [1]. When stripped of its attractive interactions, however, this system is found to lose its liquid crystalline phases. For particles of length to breadth ratio k = 3, glassy behaviour is seen at high pressures, whereas for k = 5 several bi-layer-like domains are seen, with high intradomain order but little interdomain orientational correlation. For the second model, which uses a parametric shape parameter based on the generalised Gay-Berne formalism, results are presented for particles with elongation k = 3; 4 and 5. Here, the systems with k = 3 and 4 fail to display orientationally ordered phases, but that with k = 5 shows isotropic, nematic and, unusually for a hard-particle model, interdigitated smectic A2 phases.</p
Simulating Particle Dispersions in Nematic Liquid-Crystal Solvents
A new method is presented for mesoscopic simulations of particle dispersions
in nematic liquid crystal solvents. It allows efficient first-principle
simulations of the dispersions involving many particles with many-body
interactions mediated by the solvents. A simple demonstration is shown for the
aggregation process of a two dimentional dispersion.Comment: 5 pages, 5 figure
- ā¦