5,020 research outputs found

    Chitosanase may enhance anti-fungal defense responses in transgenic tobacco

    Get PDF
    Chitosanase is an enzyme, similar to chitinase, capable of hydrolyzing the β-1,4-linkages between N-acetyl-D-glucosamine and D-glucosamine residues in partially acetylated chitosan polymers found in fungal cell walls. When attacked by pathogenic fungi, many plants exploit this hydrolytic action as a component of a larger post-attack defense response, but these enzymes may also play a role in the initial plant-pathogen interaction via the generation of elicitors resulting from the hydrolysis of fungal cell walls. To gain insight into these mechanisms, a Paenbacillus chitosanase was cloned, sequenced, and modified for plant expression. The modified gene was delivered to tobacco (Nicotiana tabacum L. cv. Xanthine) leaf disks via Agrobacterium tumenfaciensmediated transformation. Whole plants were regenerated from the transformed cells. The putative transformants were tested for transgene integration, transcription, and translation. Confirmed transformants were then screened for enhanced responses to a Rhizoctonia solani cellwall preparation by measuring time-course production of hydrogen peroxide, phenylalanine ammonia lyase, and peroxidase. These compounds play roles at different points in a pathogenesis-related signal transduction pathway and thus allow for an initial assessment of the global defense response. Preliminary data suggest that transgenic tobacco constitutively expressing a Paenbacillus chitosanase may activate pathogenesis-related defense responses more quickly than wild type tobacco

    Composite seal for turbomachinery

    Get PDF
    A gas path seal suitable for use with a turbine engine or compressor is provided. A shroud wearable or abradable by the abrasion of the rotor blades of the turbine or compressor protects the rotor blades. A compliant backing surrounds the shroud. The backing may be made of corrugated sheets or the like with adjacent layers having off-set corrugations, with axes of the folds parallel to the rotor axis. The sheets may be bonded together at points of contact by brazing, welding or the like. In another embodiment a compliant material is covered with a thin ductile layer. A mounting fixture surrounds the backing

    Wear of seal materials used in aircraft propulsion systems

    Get PDF
    The various types of seal locations in a gas turbine engine are described, and the significance of wear to each type is reviewed. Starting with positive contact shaft seals, existing material selection guidelines are reviewed, and the existing PV (contact pressure X sliding velocity) criteria for selecting seal materials are discussed, along with the theoretical background for these criteria. Examples of wear mechanisms observed to operate in positive contact seals are shown. Design features that can extend the operating capabilities of positive contact seals, including pressure balancing and incorporation of hydrodynamic lift are briefly discussed. It is concluded that, despite the benefits arising from these design features, improved positive contact seal materials from the standpoint of wear, erosion and oxidation resistance will be necessary for further improvements in seal performance and durability, and to meet stringent future challenges

    Fretting in aircraft turbine engines

    Get PDF
    The problem of fretting in aircraft turbine engines is discussed. Critical fretting can occur on fan, compressor, and turbine blade mountings, as well as on splines, rolling element bearing races, and secondary sealing elements of face type seals. Structural fatigue failures have been shown to occur at fretted areas on component parts. Methods used by designers to reduce the effects of fretting are given

    Some considerations of the performance of two honeycomb gas path seal material systems

    Get PDF
    A standard Hastelloy-X honeycomb material and a pack aluminide coated honeycomb material were evaluated as to their performance as labyrinth seal materials for aircraft gas turbine engines. Consideration from published literature was given to the fluid sealing characteristics of two honeycomb materials in labyrinth seal applications, and their rub characteristics, erosion resistance, and oxidation resistance were evaluated. The increased temperature potential of the coated honeycomb material compared to the uncoated standard could be achieved without compromising the honeycomb material's rub tolerance, although there was some penalty in terms of reduced erosion resistance

    Friction and wear of sintered fiber-metal abradable seal materials

    Get PDF
    Three abradable gas path seal material systems based on a sintered NiCrAlY fibermetal structure were evaluated under a range of wear conditions representative of those likely to be encountered in various knife-edge seal (labyrinth or shrouded turbine) applications. Conditions leading to undesirable wear of the rotating knife were identified and a model was proposed based on thermal effects arising under different rub conditions. It was found, and predicted by the model, that low incursion (plunge) rates tended to promote smearing of the low density sintered material with consequent wear to the knife-edge. Tradeoffs benefits between baseline 19 percent dense material, a similar material of increased density, and a self lubricating coating applied to the 19 percent material were identified based on relative rub tolerance and erosion resistance

    Development of sprayed ceramic seal systems for turbine gas path sealing

    Get PDF
    A ceramic seal system is reported that employs plasma-sprayed graded metal/ceramic yttria stabilized zirconium oxide (YSZ). The performance characteristics of several YSZ configurations were determined through rig testing for thermal shock resistance, abradability, and erosion resistance. Results indicate that this type of sealing system offers the potential to meet operating requirements of future gas turbine engines

    Independent Orbiter Assessment (IOA): Analysis of the crew equipment subsystem

    Get PDF
    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical (PCIs) items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results coresponding to the Orbiter crew equipment hardware are documented. The IOA analysis process utilized available crew equipment hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 352 failure modes analyzed, 78 were determined to be PCIs

    Chitosanase May Enhance Anti-Fungal Defense Responses in Transgenic Tobacco

    Get PDF
    Fungicides are expensive, dangerous, and can be harmful to the environment, but they are often necessary for profitable farming operations. New technologies may soon allow farmers to replace these chemicals with genetically engineered plants producing antifungal enzymes that degrade fungal cell walls. To explore this option, a Paenbacillus chitosanase gene was cloned, sequenced, and modified for plant expression. The modified gene was delivered to tobacco (Nicotiana tabacum L cv. Xanthine) leaf disks via Agrobacterium tumenfaciens-mediated transformation. The putative GMOs were tested for transgene integration, transcription, and translation. Confirmed transformants were then screened for enhanced responses to a Rhizoctonia solani cell wall preparation by measuring time-course production of hydrogen peroxide, phenyalanine ammonia lyase, and peroxidase. These compounds play roles at different points in a pathogensis-related signal transduction pathway and, thus, allow for an initial assessment of the global defense response. Preliminary data suggest that transgenic tobacco constitutively expressing a Paenbacillus chitosanase may activate pathogenesis-related defense responses more quickly than wild type tobacco
    corecore