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ABSTRAO

The various types of seal locations K a CCs turbine engine are described,
and the significance of wear to each type is reviewed. Starti"r with positive
contact shaft seals, existing material selection guidelines are reviewed, and
the existing PV (contact pressure A slidinK velocity) criteria for selectinc
Neal materials are discussed alone with the theoretical background for these

w
criteria. Examples of wear mechanisms observed to operate In positive contact
seals are shown. Design features that can extend the iperating capabilities
of positive contact seals, including pressure buiancinr and incorporation of
hydrodynamic lift are briefly discussed. It is concluded that, despite the
benefits arising from there desiCn features, improved positive contact seal
materials from the standpoint of wear, erasion and oxidation resistance will
be necessary for further improvements in seal performance and durability, and
to meet stringent, future challenges. Materials used in noncontactin, rao path
seal applications are described, and a review of wear studies performed oil
these materials is presented. factors that promote drastic changes in the
structure and wear behavior of highly porous E as path seal materials are dis-
cussed. For low porosity metallic gas path seal materials a correlation be-
tween wear characteristics and a factor that includes material strenrth, duc-
tility, specific heat and hot-working temperature is proposed.

INTRODUCTION

In a modern aircraft gas turbine engine there is a multitude of seal lo-
cations as shown in Fig. 1 1 all of which are significant with respect to the
performance and reliability of the e,igine. The types of seal locations may be
classified into ^ broad categories.

First there are the mainshaft seals. The primary function of these seals
is to protect the bearing compartments from the potentially damaging engine
environnent outside the compartment. Generally positive contact seal designs



2

are used in the mainsliaft heal looat ions, thou*h sometimes noneontaoting lab-
yrinth seals may be employed.

The second type of Neal location includes the nominally noncontacting
gas path seals. Among the t ,,as math seals are the numerous labyrinth seals
designed to reduce Loss of high pressu re Cas from the eilgine cycle, control
cooling air flow through the hot section of the engine, and to iaintain pres-
sure balance on the rotor shaft system. Also included t3mon i- the eu.; path seal
positions are the important outer gas path seal locations oven compressor alid
turbine blade tip.. The outer t!as path seals are intended to maintain close
operating clearance between the rotating blade Lips and the stationary seal
components, thereby helpin t- to maintain engine efficiency.

Wear of the materials comprising the various types of seals is a very
important consideration. Besides directly aft'ectine seal. component life, wear
avid associated loss of Neal performance in mainshaft seals car. lea ,,l to accel-
erated bearing:. failtu-e. Also, loss of oil through excess ive seal leaka j a can
cause fouling of the primary engine components, promoting stall and presenting
se% • ere safety hazard.,. A stady performed oil several sr.:all military eneJuie:
showed that a leading cause of early vjiCine removal was o'_1 leakage through
mainshaft seals (1), attributable tri part to wear of the sea.). element:.

Though they are not intended to rub during operation, engine structural
distortions, thermal response effects, and dynamic loads inevitably lead to
tra.isient rub interactions between teas patli seal _, oaiponents . If all of the
wear incurred during such rub interactions were restricted to the stationary
gas path Neal material, an overall benet'it in terms of reduced operatili,•,
clearance may be realized, as illustrated in Fit;. 2. Tile efficiency benefits
of operatin t; with opt:Unum gas path seal clearances throuthout the vii i-ine are

:::•Wan ed in (').	 Briefly, (.') •indicates that a ' ^; percent; improvei:;eiit• in
:'C (Thrust Specific Fuel Consumption) can be realized with a nominal reduc-

tion in teas path seal operating clearances. In addition, wear to the tips of
hit-h pressure tu r bine blades can initiate sites of rapid corrosive attack to
the blade through disruption of protective blade ooat.ings. In the compressor,
rapid heating of titanium alloy blade tip durint,- adverse rub interactions can
potentially lead to severe thermal damage.

Having illustrated the overall significance of wear considerations in
,;as turbine sealin t •;, it is the intent of this paper to -ummarice the state of
seal material teclinolo t y particularly from the wear standpoint. Methods of
testing, currently used materials, and the current wider:,tanding of seal wens
phenomena are reviewed. Areas neediri t; further development are suggested.

MAINSILUT SEALS

General Description

Two types of positive contact mainshaft seals are shown in Fig. 3, and a
i •• .ther thorough discussion; of the operating principles of each may be found in
(^). Tile sealing elements of the face seal design include a rotating seal



it

:dc 11:1
!•,ie na'c:

1k	 id
tai

1..

	

it , ut;ually with a hard metallic	 stul•Caee mounted to the .1hai't , and
it nonrotatint; primary seal ring, ucutu L.y it . •urbon graphite material, whi. h is
.allowed to ir..)ve axially, acoomodatttl t; axial motion of tile seat ,tue t., l Mull - .)tit

it,:hm llt. Carbon graphite i:% ch•vvn as; the rin t •. material part 1 y be-
its inherent self - lul , rio:ht i:::	 • %puHlitlev.	 Alto, it ve, • i_)ndtLl •.% :onl

	

ded between •.he prbiutr.N t :r	 :order ar►d :ltat.ionary steal hou::ln ► ..
L closing force is usually prov i,te,i by it combi::at ion of sprint; force iw,i

' ed preassure load l nt;.

.; eal. tl.l-c-1 ,lopi, ted L it 	 •S , cotlsist. )t' ovcl•lal'l'int•
tt.ah, u:;111111y art"m ( "raphitc, held d I ► t o clone proxir.:.ity

it .;1 reumt'erent Jul t^art.er spring.	 11va:ttu •e loa,i i n t ' of

ut"taillot the rotating .:hart is, 1211wrelltly !lilt

the t'ace :;eal ,te sigll, therel'oret oirolu:a'cr-
1.	 ill lower ,111'1'erential prefl:ture apps loat i,':I

hd.	 r	 ial :teals are ubly to accoino,tutr re ater ax i:a.l

.:t000 than face set11 however.

Materlul:;

..,, a lt	 . ^ ,, • 	•^. 1 :.	 c',i	 i n	 '.e'

t:;

;t.aeting clelnertt.s of shaft : ca l_ twe
::1 (4), t'or face .1eal s and cir,'tu !:I'vr-
t tlpeo fie mitt.erial oombination re-

ao the :•ell l applicati on sever) t.N'

'lie lubric•atint; otipac • Ity of the
IA tem}vrtltau•e ill' t tle :real en-

^lrbon- t,r:a} ail i t c• " Jonotes a
e ,	 cents comp) . i g ill( the carbon

manuftioture, it
:oat;,	 Ie,i, as ill.u:,trate,i in

e!.	 •cations the : ;eat material is a
,,r "111'o:nc . l late Iahpl ied to

' 01' -teat IIlat . el • 1 al 1: to
abrasive	 oil-

y be carried betwc,	 :eul elenaer,t.:;.

host tit' cl it ti. t'it , ! .. t ► t '.ener:al :-ui,iel dnr in
application tul,i ::uit:tt i1.it^' ,^t' :t d' :u • tictlLtu • mate-

.^	 tor.	 Tile IT 1',w tor i :. ,ie t' i ne,i :a: : the uroduot of
:u • e	 wl,i .;l.id llr.. vvLo, • Ity ill C'eet irr .;e.,,:..t. 	 1'',' rut-

i.	 uni•c•r	 t' , ,ont,ttot ::eal material: are ::howl; ill li t -. -}, taKen from, (tt).
It	 !,.ny:. Lit ( ) how the 1"i rating may be d nt o rpret t e.1 tl: it ti,e rmul. 1 lilai ta-
t.	 the seal material, 01' :1s it wear c • rit•erion.	 For either inte.rhre tat ion,

J1011  Of a iT rat i l ► t •. rulc:t. 1 nc l u,to . • are fell	 of the oval
I . ,till(	 tul,i : lwround 1 al t"s (:at i 1 i ty o,' t.hr :-.ea it .^ ,i i ::, i pat.e heat ) atld the like

luOr i , • at i on 1110de O lTe: t i Vag it, the . , c^a l t,,ap.

.111•Cc ml),te: JI lilt, r !oat . ion t hat are en,owiterod ill oontuct Beals are

runar i ed ill d•'l t;.	 01). 	 The lui r i eat j ilt -, t'lu d ,i IL, of ooti se the sealed t'ltli,i.
In thot., at. any i: • : tt111t., Vlore t.thtul one moiie may lie o}v rat i:1 t •• at various loca-



a

tions in a seal. From the standpoint of reducing wear, it is desirable to
operate Ill f lie full t'i.!.t lubrication mode. "'actors that tend to stabilize the
full film mode are surveyed in (J) and include waviness of the seal element
surfaces, :erLai:l type:, of alk-ular misalignment, and the t'ormation of a liquid
to vapor interface in the seal gag. During seal start-up operations, udder
conditions of severe misali i^iunent and run-out, and in situations in which lub-
ri.cant (:'ealed fluid) supply is not available or lubricant temperatures tire
high, boundary lubrication or dry slidirt t- modes may be encourit.ered. It is
evident that those factors controlling the lubrication mode effective ill a
positive conta A seal are themselves riot always very amenable to control.

, , ar of Positive Contact Seal. Material::

First, level sereening, tests for- seal material. wear, are ii ually conducted
a fairly simple apparatus, such as the pits-on-disk rt t; shown in Fi t,. t,.

-e, conditions of slidinj- speed, contact. load, surroutldin t; temperature and
,-ironment may be set to simulate those of a selected seal appliration.

oiiding speeds of 100 m/se: are typi.:al for gas turbine shaft seal appllea-
tioni, with nominal contact pressure of several pounds per square inch. ':'em-
peraturec may exceed 1000 0 F in severe application:. Usually sliding condi-
tions are dry or ill a boturdary lubricating mode-obviously it is not poosible
to sinralate t'ull fl-Lm formation mechanisms on :-,uoh a ri t . resides pin - on -disk
configurations, annular ring configurations or conformal pad ,-e.,metrles are
sometimes used ill wear testing of seal nulterials.

Ara example of the infoiinatlon that can be obtained from such testing is
r L:;ed in Fi t;. 7 (10) . here the effects of variations in carbon ,..raphite

crial formulations and incorporation of seLeeted :additives on sliding wear
the carbon graphite at temperatures to 1'-00 0 r' are seen. It was concluded

that tit temperatures to 100 0 1', two materials pert'ormed satisfactorily: car-
bon graphite with a carbonl ed resin impregnant (A-.'. J -C), and carbon t•rapllite
with a meta L phoophate imprernant 	 all of the other materials under-
went a, celerated wear combined with rapid oxidation at 1200 o 1'. The 1:'00 0 F
temperattu•e is i,l tact approa:! Iied in sane of the inure severe aircraft engine
contact seal. applications. 'FypL, al applications are usually at 000 1-' F and
longer though.	 •

Besides wear rates and friction measuremet:ts, s,:reenin t - t.esto provide /
sonic clues concerning; the friction and wear mechanisms operating at :.eal mate-
rial interi'aces. The ability of carbon graphite to be sell'-Lubricating ill the
eve:lt of dry contact depends oil the formation of a thin, oriented, easily
shearable layer of graphite on the sliding surface (11). So long as this
layer is maintained wear will be low. CertaLn conditiot?s lend to the disrup-
tion of the easily shearable graphite layer. Among then: are the thermally in-
duced desorption of adsorbed gases (0-, H2O) on the ourfaces and ed t-eo of crys-
tallites comprisint_t the shear layer (11), and disruption of the surface oxide
present on the metal counterface (1:'). Disruption of the oriented Crapllitic
film exposes the urlderlyin t; randomly oriented carbon graphite material to
sliding contact. The sequence of SEM photograph: shown in Fig. 8 illustrates
the condition of the carbon graphite sliding surface with the oriented filin

t
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Tes',	 A, fu.;	 " a.	 s i t-n:: or assemblies is usually conducted on a test
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olin i; t.^ about	 o	 c i t.liiti a 1'ew .?econ.is.	 'Phe de:	 of this layer roil ( lily
irrespond,-, to ti., :epth of the E ruolc:, shown ill Fit. 	 At. ttreater depths

beneath the rut , Ltirface, a sort. iarkcr ;;iinded rcj_ , .oit	 • otuitered in which
lower than bulk hardness are mea:, turo,t,	 !!ere, i •riotioiiul heating pi-xioted
further temperitig of the hardened 4 .10.' ot•rue.t.tu•e.

Desideo wear conoIdo rat ioils for the primary seiilin t,, elements, there are
wear problems assoc iated with the secondary seal Lil t- paths of both eireuttifer-
ent,ial and face deal de::i,:as. hue to shaft runout effecto, low amplitude cs-
ciliat.ory motion `an pranote frettin tt, damage to the lap joint• interfaces of
the : i rcurnfcrential :teal and the pistoti ring, carrier interface of somie .face
seal designs. The .; t-nifieaiice that frettint< wear call 	 oil leakage through
:^eeondary Neal. o:omponent 'is, stuiunarized it ,. (16). Due to frettl.n t; damage to the
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piston ring in an experinenttil face seal design, thirty to forty percent of
the total heal leaka f •e (:lmounting3 to several thousand : MVI) was lest through
the sa ondary seal.

Some recent advances in seal design show promise for reducing; some of the
.r problems discussed here. With careful balancing; of pressure forces on

primary ring, the contact pressure may be controlled to a low value
t'icient to maintain sealinh, thereby e i'fectively re.iu.• i ng the lei f'ac-
irodynamic lift may be provided to the primary seal elements by in-

: • ; ,ora .inf- lift pads in the seal design ( Fig. 11), enabling; the seal to run
a thin, stable gas or liquid film raider steady state conditions. Fven with

this self-acting_, Lift feattire of course, sliding contact is incurred oil start-
:IF' and 8111.1t-dawn US well as under conditions Of unstable )peratinc, evonlet.ry.

the effects of abrasive particles carried across rile primary seal inter-
a.:e are still significant, as is fretting wear to the secondary sealin t; ele-

:::erlts.

r11 sw»rviry, for positive contact mainshaft seals, there is a significatlt
:reed .or improved ;Dear,erosion, and oxidation resistant self lubricating;
materials for temperatures to 1"00 0 F. Also, hard materiaL., or coatings ex-
IU— iti:w good thermal stability with respect to properties and structure are
ceded Ln seal seat. applications, The development of several plasma sprayed
Lloy and cerr,:et materl;ll.n for mechanical face seal applications is reported

(17). High temperature fretting and abrasion resistant materiels are re-
,airea for secondary seal locations.

AS PA'TIf SEALS

.eneral Survey

Ex;..	 mate	 used in both secondary gas path seal locations and
n:'	 •I Sea- ... , ations are alurunarlced in Fi t ;. 12. 'The primary oon-

'jder::	 tion of the seal mat:er`..alo for various location f: the
local	 .1Vratw•e. The de. tral Le wear characteristic of eacil of the
materia;	 in Fi t". 12 0 intheir respective locations, i o that the
.(!al	 wear rather than the rotating labyrinth se : knife ed(;e
r blade tip. In jvneral. there are tllree approachei^, presented schematically

:n Fi t '. 1: , that may be followed to provide a g-as path seal material with this
:esirable wear characteristic often (somewhat- misleadin E;ly) called abradabtl-
ty.

The first: approach, indicated in Fig. 1 (a), is to employ a hi f-Illy porous
low density .nateri.al. Such materials are usually prepared by sinteriag:; metal
powder: or fiber particles, often in mixture with transient fiLler materials.
It is also possible to pla:-tna .,pray such a structure by spraying metal parti-
eies mixed with easily vol itilizable polymeric particles, or with exaphit-e.
Abradability is afforded by the easy removal of diocrete particles fra:n the
bulk seal material; fracture nla ŷ readily ocew• across the small interparticie

1k.
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,"I area when a rub occurs. Limitations inherent in this type of material
ride susceptibility to erosion dama,.•e, and inefficient sealing duct to leak-
through open porosity.

A second class of gas-path seal materials depicted in Fig. 13(b), in-
cludes more dense structures (less than 50 percent porosity) Oich are often
plasma-sprayed and, in some cases, siutercd, hot pressed, or even cast. Rub
Interactions for this class of seal materials are accommodated ir. a more com-
plex ma:Laer than were those or the first type of seal material. Usually a
­~Yination of plastic defci,aation, material compliance (deasification), and

ing mechanisms is involved. Attain, variations of this type of material
ylc ,used in gas-path seal locations throughout the e:Wine - elaotomeric mate-
rials being employed in low pressure compressor positions, low temperature
-'al; in higher compressor stares, and 41h temperature materials in the tur-

.

The third clans of jas-path seal materials derive:: rte rub tolerance from
the geometric arrangement of thin metal sheets from which the Neal is fabri-
,ated. probably the most wiAely used example of this type is metallio hone,; -

• omb. The honeycomb cell walls are oriented in the radial direction. Cen-
• uently, very little metal to metal contact surface area is in volved when a
interaction occurs. Honeycomb structures are generally applied to low

prewoure turbine seal positions.

Methods of Evaluat..ion

;ear characteristics of gas path seal materials are evaluated on test
ri	 like the one shown in Fits. 14, that incorporate geometries and rub pa-
rs:	 srs similar Q those encountered in the engine. RuU speeds of up to
31	 sec (1000 ft /sec), and radial incuraiou rates of from 2.54 to 04 micro-
A .	 per second (0.1 to 10 mils/sec) are typical of the range of controlled
pay	 ters investigated. Most rigs have provisions for test.inC both labyrinth
seal :uiife edge and multiple blade tip rotors. Bulk temperature of the seal
material is usually controlled. Seal sample dimensions are usually such that
the rub arc length is about 101 or less. pleasured parameters include radial
and frictional fo=we::, seal material and rotating material wear volumes, py-
rometer measureme::' s of rotor temperatures, and thermocouple measurements of
seal naterial temperatures. Also, debris from the rub zone is often collected
for analysis, and seal and rotor samples are generally subjected to metallo-
graphic study. Wear performance or abradability is usually summarized as a
volume .,rear ratio number, the wear volume measured on the rotor divided by
the wear volume of seal material.

It is very difficult to assess the extent to which various seal rub test
rigs simulate engine seal rubs. Comparisons can only be made on the basis of
the appearance of rubbed seal and blade tip (or knife-edge) surfaces upon en-
gine overhaul or rework inspections. Part of the difficulty lies in the great
amount of uncertainty as to the exact conditions under which engine rubs oc-
curred. Also, the effects of rub interactions on seal and rotating component
surfaces are usually masked by erosion and oxidative effects that can alter
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;,e rubbed surfa s	 Nevertheless, seal rub tests from what
are p1	 :i ttie -tandpol%t of eal studies) the tuost controlled engine
tests re	 ed do show general material ranking trends similar to those ob-
taine.i frum rig tests (16).

The most open questions concerninv, the similarity between rig tests and
engine rub conditions probably relate to the blade tip test geometry. The
sigt:ificance of nominal blade pass frequency, theoretical chip or cut depths
per blade (incursion rate divided by blade pass frequency) and seal rub are
length are not well understood.

Wear Phenomena

Low density materials. - For lou density gas path seal materials, the in-
tent is that rub interaction be accomi,odated by removal of discrete particles,
thereby- minimizing frictional heating effects and wear to the rotating compo-
nent. Under some rub conditions however, it is observed that the surface of
the low density seal material becomes smeared, and in effect the rotatin6l com-
ponent is Ln contact with filly dense seal material. Such a smeared rub sur-
face is depicted in Pig. 15. As indicated in Fitz. 16, the rate of frictional
heat gereratio:i at the rub interface increases by two orders of magnitude when
snearin- occurs (1:1). Microsections of a Ti-6A1-9V rotating component after
such a high energy rub (Fi t;. 17) show evidence of very rapid oxidation in some
caves as indicated by quasi-spherical cavities in the rub surface arid intense
white sparking; during the rub. Also, in other studies it was observed that
high ener ty rubs promoted fine martensitic platelet formation near the rub
surface (20).

::aturally, since the occurrence of smearing has such a marked effect on
the rub behavior of low density gas path seal materials, conditions that pro-
mote smearing are of interest. For a series of labyrinth seal knife edge
tests reported in (21), a general observation was that low incursion rate
conditions were more likely to promote smearing than high incursion rate con-
ditions. A model, based on thermal diffusivity effects and summarized in
Fi tt. 18, was proposed to accotuit for this trend. Additional effects, namely
particulate escape statistics under various rub conditions and geometries,
were studied in (19). A thorough study of the first order effects of the con-
trollable rub parameters (;peed, incursion rate, geometry) on rub ener,y and
blade tip wear is reported in (20), with the effect of incursion rate and oc-
currence of rub surface smearing a ttain being very significant. However, the
tendency toward smearinc was observed to be greatest under high incursion rate
conditions. These apparent disagreements between the results of (20) and (''I)
are probably attributable to very different test geometries - a rotating knife
e,.ir,e was used in one case (21) and a stationary blade tip, rotating seal mate-
rial geometry was used in the other case (20).

To summarize the understanding of rub characteristics of low density teas
p!.,,th seal material:, adverse rub surface conditions avid some sets of rub pa-
rameters that favor those conditions have been identified. It should be
pointed out that most of the studiez have been performed on one family of

k-
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e yed fiber low density seal :raterials. The degree to which results ob-
oe these materials would apply to other low density seal materials is
uin. Also uncertain is the exact mechanism or combination of mechanisms

possible for the onset of smearing, with consequent rapid frictional heat-
ing and wear to the rotating; component.

Dense Plastically deformable materials. - The rub behavior of this second
class of bas path :Neal materials is more stable than that of the porous mate-
rials since the structure of the material is not so prone to drastic: chan^-e
under rub conditions. The comparative performance of a series of dense seal
aterials prepared by plasma spray desposition is summarized in Table IV. In
ill cases rubbing "as against Ti-60-0 simulated blade tips. The material^
were selected on 'she basis of their being potentially machineable by the tita-
nium alloy blades, hardness versus temperatur, being a rough first order
screening guile. No single material property except perhaps the impact
strength correlates with the rub performance ranking summarized in Table IV.
However, motivated by considerations of adiabatic heating of the seal material
by rub induced deformation until the hot working temperature • nnge Is reached,
a nondimensional correlating number is proposed:

N a (Tensile Strength) x (Elongation) X pCp v Thw'

in gvncral, the lower this number, the more "abradable" should be the seal
Material. For most eases in Table IV, materials with low values of N do in
:'act produce low blade tip wear.

In studying, the rub mechanisms associated with fully dense materials (19),
it was proposed that the radial or normal load was controlled by plastic tn-
dentatior considerations. The frictional ener,W reszlting from the rub was
'hen simply the product of this normal load, the coefficient of friction, and
the rub velocity. Order of magnitude agreement with knife edge rub data was
obtained with this very simple model, and microsections of rub grooves
(Fig. 19) are consistent with the plastic indentation model for normal load.
Under blade tip rub conditions however, in contrast to knife-edge conditions,
the indentation (rub groove) is at least ten times as wide as it is deep, and
the rub cannot be entirely accommodated by plastic displacement of material.
Some mechanism of micromachining chip or wear particle formation is required.
Examples of such particles are to be seen in the rub debris shown in Fig. 20.

In summary, the rub behavior of fully dense materials under conditions
like those encountered in gas path .eats has not been studied so extensively
as that of the low density materials. Preliminary results seem to indicate
that the mechansisms operating are quite different under labyrinth seal knife
edge and blade tip geometries. In the former case, a continuous plastic in-
dentation model seems to be descriptive; in the latter case, wear particle and
Machining chip formation under high speed conditions appear to predominate.
Me process of vezy high speed wear particle and machining chip formation is
certainly e subject that should be further studied.

Honeycomb :,eal materials. - The third class of r_as path seal materials is
fabricated from sheets of selected alloy, brazed together to form an open face



.re like that shown in Fig, "1. These material structures offer the
ntage of better oxidation resistance than the low density materials dis-
ad earlier, because of reduced exposed surface area, and are more abrad-
(for a given composition) than the fully dense ctructuren. A distinct

-oadvantage of the honeycomb is the leakage lose suffered through the open
face structure (A) .

Near to the rotating component does not appear to re a major problem with
honeycomb seals, and their rub performance does not appear to be affected ty
variations 13 rub parameters (23). TO major factor inducing rotor wear is
the presence of brace nodes between the sheets comprising the honeycomb, as
shown in Fig. 22, where the honeycomb wall is 2 to 3 times thicker than the
nominal sheet thicrneos. In the case of the test shown in Fig. 22 0 an inter-
estinr feature was observed on the rub surface of the rotatin6 labyrinth zeal
knife edge. Evidence of extremely localized "hot spots" may be seen, consis-
tent with the wear pattern measured on the knife edge. These "hot spots" are
believed to be ranlfeutations of thermoelastic surface instabilities, dis-
cussed earlier.

Not very much, perhaps: _ ^.tti`ficient, emphasis has beet, placed on rub
studies of honeycomb materials. This is partly because, where leakage over
blade tips and labyrinth seal knife edges is important of critical, honeycomb
seals have been largely replaced with other zeal systems. Where they remain:,
primarily over low pressure turbine stages and low pressure ratio seal posi-
tions, minimwn clearance is not so critical a factor.

'ONCLUDING REMARKS

Aterials for pro..t ve contact rainnhaft seals are well established, the
"ort widely used material coribinations being carbon graphite in combination
with hardened steel or chrome plate. Thus far, most advance in reducing sea].
material ,rear have been realized through aesign practices such as accurate
pressure balancing and the incorporation of self-acting hydrodynamic lift fea-
tures. Further improvement in the life of positive contact seals All require
materials with improved wear, erosion, and corrosion resistance, and improved
thermal stability with respect to structure, dimensions, and properties.

A clear Need exists for improved understanding of gas path seal wear
phenomena, and for improved gas path seal materials +hrouehout the engi :se.
Gas path seal materials must L^ abradable and at the sane time survive a
rattier severe environment fran the standpoints of erosion, corrosion and ther-
mal shock. The significance of basic first order rub parameters and seal
material properties deeds to be established. Current development emphasis is
being put on plasma-spray deposition technique:; to provide either low density
abradable structures, or easily machineable alloys.
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'fable 1. Face Seal Materials

hiNlrota:c	 I Scal Bose materinl I	 Neal seat mut.erial

W (Air, Co" , H> He, Tool steels
N.,, 00 Carbon graphite Chrome plate

Tungsten carbide,
plate and solids

Chrome carbide plate
Ceramics
300-stainless steel
400-stainless ;steel

Glass-filled PTIT 440-C
Carbon-filled 4140, 440

PTFE (not for Tool steels
H., service) (hardened)

(Sodium and fluo- Ct.rome oxide
rine compounds
and radioactivity
may adversely
affect PTI'E )

0',1 Carbon Eraphite Bronze ( for few ap-
plications

Ni-resist
Cast iron
Ceramic
Stellite (hard Win,

on 316-stainless
steel, especially Po.,
high pressures and
high velocity)

Tungsten carbide
Malcorni:ed 316-

staigless
Carbon-filled FTYE
Glass-filled PTIF-71

Sintered iron or
bronze

Nitralloy, hardened
Tool. steel, hardened
SAE-1040 :steel
Stainless steel (400

series hardened to
Rockwell C-50.
This is general rec-
ommendation as
316-stainless is not
hardenable)

Cast iron Bronze
Graphite molyb- Bronze

denum
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Figure 1. - Mb4ern transport engine (from ref. 21.
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