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ABSTRACT

A standard Hastelloy-X honeycomb material and a pack aluminide coated

honeycomb material were evaluated as to their performance as labyrinth seal

materials for aircraft gas turbine engines. Consideration from published lit-

erature was given to the fluid sealing characteristics of two honeycomb mater-

ials in labyrinth seal applications, and their rub characteristics, erosion re-

sistance, and oxidation resistance were evaluated. The increased temperature

potential of the coated honeycomb material compared to the uncoated standard

could be achieved without compromising the honeycomb material's rub toler-

ance, although there was some penalty in terms of reduced erosion resistance.
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INTRODUCTION

In an aircraft gas turbine engine there is a host of seal locations. The en-

gine schematic shown in figure 1 indicates gas path seal po-itions over the com-

pressor and turbine blade tips, between roto r stages, along internal gas flow

paths and adjacent to bearing cavities. A'I ­f these sealing positions are sig-

nificanL ,%, ith respect to safe and efficient engine operation. From the standpoint

of efficiency alone, reduction of clearances between compressor and turbine

blade tips and the engine casing throughout a typical commercial engine by a fac-

tor of 1% of the respective blade lengths would result in a 370 to 4% improvement

in engine efficiency (refs. 1 to 3). In terms of fuel consumption, 3 1,7() to 4% en-

gine efficiency improvement is equivalent to a fuel savings of 450 000 000 gal/yr

in the commercial aircraft fleet of the United States. As may be seen in fig-

ure 2, direct operating cost of an engine is extremely sensitive to fuel consump-

tion and will become even more important as fuel costs inevitably rise.

Examples of some of the types of seal locations with which this paper will

be concerned are shown in figure 3. The positions of interest include outer gas

path seal positions over shrouded turbine stages and interstage seal positions

between turbine stages. These positions are characterized by labyrinth knife-

edge seal geometries on the rotating component with a special rub tolerant seal

material on the opposing stationary component.

The primary function of the rub tolerant (or, as less accurately described,

"abradable") material is to permit the maintaining of minimum clearance be-

tween the rotor and stationary component by minimizing wear to the rotor in the

event of a rub interaction. The significanec of minimising rotor wear is sum-

marized in figure 4. A typical rub occurs over a limited arc length. If the seal

material is rub tolerant and wears with l l ' causing wear to the roti ' r, the clear-

ance increase associated with the rub	 localized, and engmc efficiency penalty

is minimal. If, on the other hand, the rotor wears, clearances are increased

over 3600 and a significant engine efficiency penalty arises.
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In addition to being rub tolerant, the seal material must also resist ero-

sion and loss of material through oxidation and corrosion. [fence, the overall

requirements which a desirable gas path seal material must meet are manifold

and sometimes mutually exclusive.

There are basically three broad types of rub tolerant gas path seal ma-

terials in use, summarized in figure 5, with various hybrids in experimental

stages of development. First, there are the low density sintered materials;

discrete particles are broken off of these materials whdn a rub occurs, and

they are the seal materials most accurately described as "abradable." Sec-

ond, there are the low shear strength materials including plasma sprayed Al

and various organic composite systems that are essentially machined away

during a rub. Third, there are the honeycomb or open structures that derive

their rub tolerance from the very small solid surface involved in a rub incur-

sion.

In this paper we will be concerned primarily with the rub behavior, ero-

sion resistance, and other durability aspects of two different honeycomb ma-

terials intended for gas path seal applications in the turbine section of the

engine. First though, let's consider how honeycomb materials actually func-

tion from the sealing standpoint in labyrinth seal configurations.

SEALING CHARACTERISTICS OF HONEYCOMB MATERIALS

The sealing effectiveness of labyrinth seals in general results from a suc-

cessive series of throttlings of the sealed fluid, shown schematically in fig-

ure 6. The fluid is accelerated as it passes through the narrow passages be-

tween the knife-edge and the opposing surface. The kinetic energy increase

associated with this acceleration Is then dissipated in the cavities between the

knife-edges. In this way, a sizable pressure drop across the labyrinth seal can

be realized with a relatively small leakage or through flow. In reference 4, a

convenient method of applying the well-known Egli equation to predicting laby-

rinth seal flow is presented and has the form: b1 - CWaryA (Pu/'A,/rF—u) where Al
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is the fluid mass flow rate; (p is the flow function determined by the seal pres-

sure ratio and the number of labyrinth stages; a is the discharge coefficient,

a function of clearance and knife-edge thickness; y is the carryover factor de-

termined by knife-edge spacing and clearance; A is the leakage area; and Pu

and Tu are the sealed fluid pressure and temperature, respectively.
i

	

	
Dt.ails of the overall labyrinth seal efficiency are sensitive to surface

finish, porosity and geometry of the seal material opposing the knife-edges. A

NASA-funded study performed at Allison (ref. 5) demonstrated some interesting

phenomena associated with honeycomb seal materials, summarized in figure 7.

It was discovered that in labyrinth seal configurations, the presence of the open

honeycomb cavities resulted in as much as a 25% reduction in measured airflow

parameter (equivalent to C4n(ry) as compared to a solid-smooth seal. Stocker

(ref. 5) attributes this significant flow reduction to the generation of turbulence

in the honeycomb cells leading to m:+re effective kinetic energy dlssopation in

the vavities. Perhaps another way of looking at the role of the honeycomb open

cells is through a possible reduction in the carryover factor.

From the observed reduction in leakage through labyrinth seal configura-

tions, it would appear then that over a range of clearance and gennictric condi-

tions, positive benefit in terms of engine efficiency would be expected from use

of honeycomb in some seal locations.

MATERIALS

The seal materials studied in this investigation included two 1.6-mm cell

size honeycomb systems. The first material which served as a baseline was

a widely used Hastelloy-X (AAIS-5536) hexagonal cell honeycomb system made

from 0.076-mm thick alloy sheet. This material is s'7na;1 in figure 8. Note

the wicking of braze material bulween adjoining alloy sheets. Wicking is

caused by capillary action drawing liquid braze material up along sharp radius

corners and open spaces where llastelloy-X sheets comprising the honeycomb

cu• c joined. Braze wicking uccurrcd on bonding of the free-standing honcY-
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comb to its metal substrate, and the braze used was AMS 4778.

The second material studies was a pack aluminide coated Hastelloy-X

honeycomb material, otherwise like the baseline. Free-Standing honeycomb,

not yet brazed to a Hastelloy-X backing, was. subjected to a pack aluminide sur-

face coating treatment. In the course of this treatment, carried out at 954 0 C

(1750 0 F) for 5 hours, aluminum is transported to the Hastelloy-X surface in a

chemically active halogenated state. Diffusion of aluminum into the Hastelloy-X

results in an aluminum-rich surface layer about 5 pm thick. The in-situ forma-

tion of a protective Al 2 0,I layer oil 	 aluminum-rich surface provides greatly

improved oxidation resistance compared to the uncoated Hastelloy-X.

The pack aluminide t2o l ired honeycomb is also shown in figure 8. There is

a significant reduction in braze wicking between the coated Hastelloy-X adjoin-

ing sheets attributed to lower surface energy of the aluminide surface. The nio-

tivation for examining the coated honeycomb wa., the potential increase in oper-

ating temperature afforded by the oxidation resistant coating..

In addition to the honeycomb materials reference is made, for purposes of

comparison, to a 33% dense (677, porous) sintered NiCrAIY material. 'Phis ma-

terial was considered as a candidate for low pressure turbine sealing applica-

tions (ref. 6), and its performance from the standp)int of rub and erosion char-

acteristics is described more fully in reference 7.

APPARATUS AND PROCEDURE

Tests to evaluate rub tolerance and abradability of candidate gas path seal

systems were performed in the dynamic abradability rig shown in figure 9. This

rig consists of a rotor drive sy stem and a se t] spec fm -n fr(d system.

The r-)tor drive system consist, of an air turbine cap: , '-le of driving disks

up to 0, 203 m N, .0 in) (hameter at speeds up to 40 000 1 pm, fntei; ha ngrable

disks for either knife-edge or blade tip configuration; are bolted to one end of

a horizontal spindle shaft. A knife-edge configuration simulating hiw pressure

turbine blade tip geometry was used for this program. The knnfe-edge was
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5.08x10 -4 m (0.020 in) thick, and 2.54x10 ` l m (0.100 in) in height. The seal

specimen was curved to conform to the curvature of the knife-edge rotor.

The seal specimen feed system consists of a dead-weight load carriage

assembly to which the seal specimen is fastened by a suitable fixture. This

carriage assembly can feed the specimen radially into the ro t or at controlled

rates from 2.;54 to 10 -6 m/s (0.0001 in/s) to 5.08x10 -4 m/s (0.020 in/s). The

radial motion of the specimen with respect to the rotor is defined as the incur-

sion rate. Normal rea , .)n force between the rotor and seal specimen is mea-

sured by a load cell installed in the carriage feed control system. For elevated

temperature tests, two oxy-acetylene heaters and an electric air heater were

used as shown in figure 9. One of the oxy-acetylene heaters and the electric

air heater were directed at the seal specimen surface. The other oxy-acetylene

heater was directed at the back of the seal specimen. The oxy-acetylene heater

directed at the seal surface was turned off immediately before the rub interac-

tion to prevent knife-edge heat damage. The second oxy-acetylene heater and

electric air heater were effective in maintaining seal specimen temperature

after the front heater was extinguished.

Rotor speed, seal specimen temperature at the center of the rub area,

carriage travel, normal load, and torque are recorded continuously during

rub interaction. Speed is sensed by a magnetic pulse counting system built

into the drive turbine. Seal specimen temperature is measured with an optical

pyrometer system. A linear voltage transformer system is used to measure

carriage assembly travel. Knife-edge torque is measured with a Vibrac torque

meter which uses a calibrated shaft, two slotted disks, and a light beam sensor

which measures the twist in the calibrated shaft by the amount of light trans-

mitted through the window opened by relative rotation of the slotted disks.

These parameters Nvere all recorded simultaneously oil niultichannel high-

speed lightbeam stripchart.
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Wear to the rotor was determined by comparing before and after test sur-

face profile traces (circumferential) in most cases, with some wear measure-

ments having been made by a series of careful diametral measurements. Wear

volume to the knife-edge was actually calculated by integrating the net change

in circumferential profile after a wear test. Since wear was often localized to

short circumferential arcs around the knife-edge periphery, wear measurements

based on comparative circumferential profiles are more likely to provide an ac-

curate wear measurement than isolated diametral measurements. Wear to the

seal material was calculated on the basis of rub groove depth measurements.

Rub performance of the seal materials was described in terms of a volume wear

ratio (VWR) defined as the volume of rotor wear or pickup (negative wear by de-

finition) divided by the seal wear volume. Small values for the VWR are desir-

able.

The erosion test rig is shown in figure 10. Erosion evaluation was carried

out at gas velocities of Al 0. 3, with erosion gas temperatures of 1144, 1255, and

1366 K achieved through combustion of .I P-4. Particulates, 80 grit At2O,3,

were fed into the gas stream at the rate of :3 kg/hr. An erosion impingement

angle of 7 o was used in all cases. Erosion results were assessed on tre basis

of material weight loss, translated into equivalent volume loss and on the basis

of microscopic examination.

RESULTS AND DISCUSSION

Results of the rub tests for the two hone ycomb materials are summarized

in figures 11 and 12.

Figure 11 shows VWR and frictional torque as a function of incursion rate.

The negative VAIR's indicate a net transfer of seal material to the rotor. Over-

all, there was a clearly increased tendenev for transfer of seal material to the

knife-edge rotor to talc place as incursion rate was increased. The frictional

torque remained relatively constant over the entire range of incursion rates.

There were some prints of difference in rub behavior for the two honeycomb
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materials as may be seen in figure 11. The pack aluminide coated honeycomb

showed a more ^onsistent tendency to transfer to the rotor than did the stand-

ard Hastelloy-X honeycomb. It should be appreciated that transfer of seal ma-

terial to the rotor is not necessarily so much better than rotor wear. Such

transfer can lead to localized material buildup on the rotor through a "prow

formation" mechanism (ref. 8) and cause self-machining of the seal material

thereby resulting in larger clearances than would have occurred if the mater-

ial behaved in an ideally rub tolerant manner (no rotor wear, no transfer).

Another point of difference between the pack aluminide coated honeycomb and

the standard Hastelloy-X honeycomb may be seen in the frictional torque char-

acteristics shown in figure 11. Whereas the standard Hastelloy-X honeycomb

showed an increase in friction torque as incursion rate increased from

25.4x10 -4 to 25.4x10-3 mm/sec, 'he pack aluminide honeycomb consistently

showed a torque minimum under the intermediate incursion rate conditions of 	 +

25.4x10 -3 mm/sec.

The significance of the high rotor wear and high friction observed under

the 183 m/sec rub condition (all other data on fig. 11 are for :305 m/sec rub

speed) for the standard Hast.elloy-X honeycomb is uncertain. The possibility

exists that excessive braze wicking took place on this particular specimen

promoting increased rotor wear.

Figure 12 shows the effect of seal material temperature on VW11 and 	 +

fr ictionai torque, The pack aluminide coated honeycomb again showed a more

consistent tendency to transfer to the rotor with perhaps increased transfer

occur ring at 1:166 K. Temperature did not appear to have a major effect on

the VWR results. Frictional torque, however, was significantly affected by

temperatures greater than 1100 K, with temperature variation otherwise

having a minor effect on friction torque. The reduced torque is very likely

due to bulk softening of the Hastelloy-X alloy.

Examination of metallographic sections through the rub grooves and of
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the rub surfaces indicates how the honeycomb materials accommodate a rub

interaction. Figure 13 shows a microsection through a rubbed node between

adjoining Hastelloy-X sheets of the standard honeycomb material. Salient

features include displacement of a substantial volume of the rubbed material

through a mechanism of plastic deformation. Near the rub surface there is

evidence of extremely high strain rate plastic deformation - note the lamellar

honeycomb wear morphology. Also note the adhereing braze alloy, intact on

the rub surface. The braze material is hard and birttle, potentially abrasive

to the opposing knife-edge.

Figure 14 shows a section and plan view of a rubbed note on a pack alum-

inide coated honeycomb specimen. The pack aluminide coating, 5 to 10 µm

thick, may be seen on the external faces of the adjoining Hastelloy-X sheets -

presumably the coating is present but much thinner on the interior faces. The

rub forces resulted in separation of the adjoining sheets comprising the honey-

comb node. There is no evidence of braze wicking in the node, but there is

evidence of some crack propagation about 1/3 of the way through the alloy

sheet, starting at the alloy/coating interface. In comparing figure 1:3, it is

seen that very little plastic deformation accompanied the rub of the pack aiumi-

nide coated honeycomb. Figure 14 combined with the MR measurements sug-

gest that material cleanly fractured from the coated honeycomb, aided by pre-

existing cracks, and adheres] to the opposite knife-edge forming a small abra-

sive cutting tool. The furrowed appearance of the rub surface itself is consis-

tent with features seen on abraded surfaces for capper (ref. 9).

Examination of' the Waspalloy knife-edge rotor, shox%n in figure lei, indi-

cates that the contact was very nonuniform during rub interactions. Hcat dis-

coloration scallops are located periodically around the knife-edge periphery,

an(] profile traces indicate these scallops to be regions of localized \\ear.

These features were typical of rub tests against honeycomb materials as well

as some sintered materials (refs. 6 and ln).



10

To further study these localized high -amperature contact phenomena, high

frequency response pyrometry instrumentation was applied to one rub interac-

tion test involving the standard Hastelloy-X honeycomb seal material. Two

pyrometers were employed, both focused on the rotating knife-edge. One was

located 200 after the exit from the contact area, the other 110 0 aNkay from the

contact area (90 0 away from the first pyrometer). Examples of the tempera-

ture traces from these pyrometers are shown in figure 16. 'faking into account

the rate of decay of the temperature peak as the rotor hot spot passes from the

'?0 0 to the 110 0 pyrometer, it is estimated that local temperature of 1:350 K

(20000 F) are reached over a 10 0 to '200 are on the knife-edge durii.g the rub

event. Obviously this means that the contact experienced by the rotor is very

nonuniform and is concentrated at one or two locations around the periphery

at a given time. The mechanism giving rise to these localized contacts is

believed to be that of surface thereto-elastic instabilities described by Burton

(ref, 11). Briefly, the scenario is as follows: (1) by chance, a small region

on the rub surface is subjected to slightly heavier rub loading than adjacent

regions; (2) higher frictional heat input to this small region leads to local-

ized thermal expansion; (:3) the localized thermal expansion, in turn, leads

to yet heavier local loads and heat input; (1) and so it goes until wear of the

local region finally leads to relief of the concentrated contact. The combination

of rubbing materials here would certainly Icnd itself to thernnoelastic instabili-

ties. The volume averaged conductivity of the honevcomb is about two Orders

of magnitude lower than that of the knife-edge. Ilencc, the bulk of' the fric-

tional lie-it would be expected to I1ow into the knife-edge rotor, leading to

thermal distortions and instabilities in the rotor.

A comparison between the pack aluininide voated honeycomb iub per-

formance and the rub performance of a :3K (7c dense sintered NiCrAl1' (ref, 7),

is shown in figure 17. It is seen that at 1:166 K sonic rotor wear did accom-

pany the rub against sintered NiCrAI1' at a ::05 misec rub speed. in dl substan-
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tial t_ asfer of material to the rotor was seen at 18:1 m/sec. The rub perform-

ance of the pack aluminide honeycomb was slightly better than the sintered

NiCrAIY fibermetal in terms of extremes of VWIZ observed. One difficulty

with the sintered NiCrAIY was its tendency to smear during knife-edge rub

interactions.

As a further note on the rub performance of pack aluminide coated honey-

comb, one test was conducted in which a 5 mm axial sweep of the rotor was

introduced after the standard 76,2 x10 3 mm inc• ur ,,ion. AS was the case for

the purely radial in c ursions, transfer of coated honeycomb seal material to

the rotor occurred in the axial sweep tests, and some smearing and folding

over of cell %%:ills was observed. In comparison, a similar test conducted

against 33% dense sintered NiCrAIY fibermetal led to rotor wear, the MR

being 0.005, and the torque level was 50 times higher th:ut for the rub against

pack aluminide c• oatcd honeycomb. No axial sweep tests were conducted on

the standard liastclloy-X honeycomb.

Hot particulate (:11, )0. erasion particles) erosion test results for the two

honeycomb materials arc summarized in figure 1s, alongwith the results for

:le( , dense sintered NiCrAlY fibermetal from reference 7. Recall that the re-

sults, expressed in terms of volume removal i-mc. :ire actually b.::.;ed on

weight loss measurement. 7 • hc stancl:tt• d (unc• oatc 1^ Ilastello)'-X honeycomb

material exhibitod the least material remoc:il, and the rate of erosion did not

appear ;o be eery -+ensitivc to temlx r:nure. In comparison, the measured

\%-eight loss on the pack aluminide c •oatcd honeycomb was :ilx ► ut five time'; as

high as the standard Ilastelloy honeycomb it l I I i K :tnd iw-ic:i•ed rapidly with

increasing; temix , raturc to 1:166 K where rate of erosion \v:i., about eight times

as great as the standard honeycomb. The sintered N it • rA l was interniedmtc

bi-m-ccn the ^landard h.)ncvc • nntb and the coated hone ycomb over the entire

temperature range.

The appt • tu • anc • e OI tilt , eroded surfaces of tht , standard hnreyc• olllb 11i:1-
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terial and the coated honeycomb, shown in figures 19 and 20, respectively, in-

dicate a fundamental difference in ero-,ion mechanisms for these two mater-

ials. The cell walls of the standard llastelloy-X honeYcomb material are

folded over in the direction of the erosion stream. 'Since little seal material

was actually removed t„e measured weight losses were low. In terms of po-

tential c learance losses, however, the standard honeycomb material is not so

different from the pack alumir;ide coated honcYc • omb From which material com-

prising the walls oriented perpendicular to the erosion was actually removed.

It shou1 d be born in mind that these are accelerated erosion teats, and the

relationship between such a rig erosion environment and the erosion environ-

ment of the engine is ; got well documented. Note that there was no material

removed for one test conducted vAthout Al 20:1 particulates at 1:166 K on the

coated honeycomb seal material.

hir.ally, the honeycomb seal materials were subjcc•ted to static oxidation

testing at 1:166 K for 50 hours. The test results indicated, as expected, that

1:166 K is substantially beyond the limits of standard IlastelloY-X honeycomb -

rapid breakaway oxidation had occurred with deterioration of the ilastellov-X

sheet comprising the honeycomb. In contrast. the ;,lun,inidC coating p--oVided

effective protccction to the llastelloy-X cell walls, with onk ^upe • rficiai pitting

Of the aluntinidc coating taking place. Sonic oxidation of the braze material

was observed, though. Thirty-three percent dense sintered NiCrAlY, SO-)

jceted to the same oxidation cxlx)surc. showed complete nxidation of about 1;':1

of the six • c • in,cn after the 50-11our tent.

Ci)NCIJ tilt ► \.S

Based nn fluid chnan,ic • c• onsidcrattc,nr;, rub toicr;uu • e cNALlation, erosion

resist.ince and oxid;,lio,n resistance of 1)4n': a stand;ird f1: ► tc Ilu^ -\ hc,nc^con,b

seal material ;wd a pack ;,lun,inide cc,atcd hnnetenn,t, n,:,tct•t:,l, the lulhAving

conclusions are drawii:

1. Scaling benclits in terms of ► 'edUC'ed Icakage might actually arise 11'0111
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application of honeycomb materials to Judiciously selectea interstage labyrinth

seal positions and outer gas path seal positions over shrouded turbine blade

tips equipped with labyrinth seal knife-edges.

2. The rub tolerance of Hastelloy-X honeycomb seal materials was not

adversely affecteu by application of a pack aluminide coating to the honeycomb.

:^. The standard Hastelloy-X honeycomb and the pack aluminide coated

honeycomb showed fundamentally different erosion characteristics and rates

of material removal. In terms of clearance effects attributable to erosion,

the differences were not so significant.

4. Pack aluminide coated honeycomb showed potential for higher tempera-

ture application than the standard Hastelloy-X honeycomb.
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ials as a function of clearance for a 4-tooth straight through labyrinth

seal configuration (ref. 5). Pressure ratio, 2 0.
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Figure 11. - Volume wear ratio 2nd friction torque versus incur-

sion rate for Hastelloy-X honeycomb and pack aluminide coated

honeycomb.



(a) SECTION THROUGH NODE.

H

1^ u

(b) HONEYCOMB MATERIAL (H) AND

BRAZE ALLOY (B) ON RUB SURFACE.

o .05

ax
0" n 	 n 	 i n

W	 o

-. 05 ^—	 •
L	 ^

10,	 I	 I	 i

3

n
n

0

PACK Al,

305 misec

o HAST-X

305 mfsec

• PACK Al,

183 misec

n HAST-X

183 misec

00 1 400	 600	 800 1000 1200 1400 1b00	 CS-113-11iih

T, K

Figure 12. - Volume wear ratio and friction torque versus test tem-

perature (25.4x10 -6 misec incursion rate conditions in all cases).

L
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Figure 13.- Microsection through rubbed node on Hastelloy-X honeycomb.

Rub speed was 183 misec, the incursion rate was 25.400 -6 misec, and

the test temperature was 230C.
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Figure 14. - Pack aluminide coated honeycomb after 305 m/sec rub at

25.4x10 -6 m/sec incursion rate, 23 0 C.
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Figure 16.- High speed pyrometry data from rub interactiom between a Waspalloy

knife-edge and Hastelloy-X honeycomb. Ruh %peed was 305 misec, incursion

rate was 25.4x10 -6 misec, the test temperature was 230 C.

I iyure 17. - Volume wear ratio of pack alL l minide coated honey-

comb and NICrAIY fiber-metal at 1366 0 K and under 25, 410-6

misec incursior. rate conditions.
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Figure 20.- Pack aluminide coated honeycomb specimens after being sub-

;ected to particulate erosion at the indicated temperature.
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