146 research outputs found

    A new and unusual LBV-like outburst from a Wolf–Rayet star in the outskirts of M33

    Get PDF
    MCA-1B (also called UIT003) is a luminous hot star in the western outskirts of M33, classified over 20 yr ago with a spectral type of Ofpe/WN9 and identified then as a candidate luminous blue variable (LBV). Palomar Transient Factory data reveal that this star brightened in 2010, with a light curve resembling that of the classic LBV star AF And in M31. Other Ofpe/WN9 stars have erupted as LBVs, but MCA-1B was unusual because it remained hot. It showed a WN-type spectrum throughout its eruption, whereas LBVs usually get much cooler. MCA-1B showed an almost four-fold increase in bolometric luminosity and a doubling of its radius, but its temperature stayed ≳29 kK. As it faded, it shifted to even hotter temperatures, exhibiting a WN7/WN8-type spectrum, and doubling its wind speed. MCA-1B is reminiscent of some supernova impostors, and its location resembles the isolated environment of SN 2009ip. It is most similar to HD 5980 (in the Small Magellanic Cloud) and GR 290 (also in M33). Whereas these two LBVs exhibited B-type spectra in eruption, MCA-1B is the first clear case where a Wolf–Rayet (WR) spectrum persisted at all times. Together, MCA-1B, HD 5980, and GR 290 constitute a class of WN-type LBVs, distinct from S Doradus LBVs. They are most interesting in the context of LBVs at low metallicity, a possible post-LBV/WR transition in binaries, and as likely Type Ibn supernova progenitors

    SN2013fs and SN2013fr: Exploring the circumstellar-material diversity in Type II supernovae

    Full text link
    We present photometry and spectroscopy of SN2013fs and SN2013fr in the first 100 days post-explosion. Both objects showed transient, relatively narrow Hα\alpha emission lines characteristic of SNeIIn, but later resembled normal SNeII-P or SNeII-L, indicative of fleeting interaction with circumstellar material (CSM). SN2013fs was discovered within 8hr of explosion. Its light curve exhibits a plateau, with spectra revealing strong CSM interaction at early times. It is a less luminous version of the transitional SNIIn PTF11iqb, further demonstrating a continuum of CSM interaction intensity between SNeII-P and IIn. It requires dense CSM within 6.5×\times1014^{14}~cm of the progenitor, from a phase of advanced pre-SN mass loss shortly before explosion. Spectropolarimetry of SN2013fs shows little continuum polarization, but noticeable line polarization during the plateau phase. SN2013fr morphed from a SNIIn at early times to a SNII-L. After the first epoch its narrow lines probably arose from host-galaxy emission, but the bright, narrow Hα\alpha emission at early times may be intrinsic. As for SN2013fs, this would point to a short-lived phase of strong CSM interaction if proven to be intrinsic, suggesting a continuum between SNeIIn and II-L. It is a low-velocity SNII-L, like SN2009kr but more luminous. SN2013fr also developed an IR excess at later times, due to warm CSM dust that require a more sustained phase of strong pre-SN mass loss.Comment: MNRAS accepted. 28 pages, 23 figures, 8 table

    SN2012ab: A Peculiar Type IIn Supernova with Aspherical Circumstellar Material

    Full text link
    We present photometry, spectra, and spectropolarimetry of supernova (SN) 2012ab, mostly obtained over the course of ∼300\sim 300 days after discovery. SN 2012ab was a Type IIn (SN IIn) event discovered near the nucleus of spiral galaxy 2MASXJ12224762+0536247. While its light curve resembles that of SN 1998S, its spectral evolution does not. We see indications of CSM interaction in the strong intermediate-width emission features, the high luminosity (peak at absolute magnitude M=−19.5M=-19.5), and the lack of broad absorption features in the spectrum. The Hα\alpha emission undergoes a peculiar transition. At early times it shows a broad blue emission wing out to −14,000-14{,}000 km s−1\mathrm{s^{-1}} and a truncated red wing. Then at late times (>> 100 \,days) it shows a truncated blue wing and a very broad red emission wing out to roughly +20,000+20{,}000 km s−1\mathrm{s^{-1}}. This late-time broad red wing probably arises in the reverse shock. Spectra also show an asymmetric intermediate-width Hα\alpha component with stronger emission on the red side at late times. The evolution of the asymmetric profiles requires a density structure in the distant CSM that is highly aspherical. Our spectropolarimetric data also suggest asphericity with a strong continuum polarization of ∼1−3\sim 1-3% and depolarization in the Hα\alpha line, indicating asphericity in the CSM at a level comparable to that in other SNe IIn. We estimate a mass-loss rate of M˙=0.050 M⊙ yr−1\dot{M} = 0.050\, {\rm M}_{\odot}\,\mathrm{yr^{-1}} for vpre=100v_{\rm pre} = 100 \,km \,s−1\mathrm{s^{-1}} extending back at least 75 \,yr prior to the SN. The strong departure from axisymmetry in the CSM of SN 2012ab may suggest that the progenitor was an eccentric binary system undergoing eruptive mass loss.Comment: 18 pages, 12 figure

    A new and unusual LBV-like outburst from a Wolf–Rayet star in the outskirts of M33

    Get PDF
    MCA-1B (also called UIT003) is a luminous hot star in the western outskirts of M33, classified over 20 yr ago with a spectral type of Ofpe/WN9 and identified then as a candidate luminous blue variable (LBV). Palomar Transient Factory data reveal that this star brightened in 2010, with a light curve resembling that of the classic LBV star AF And in M31. Other Ofpe/WN9 stars have erupted as LBVs, but MCA-1B was unusual because it remained hot. It showed a WN-type spectrum throughout its eruption, whereas LBVs usually get much cooler. MCA-1B showed an almost four-fold increase in bolometric luminosity and a doubling of its radius, but its temperature stayed ≳29 kK. As it faded, it shifted to even hotter temperatures, exhibiting a WN7/WN8-type spectrum, and doubling its wind speed. MCA-1B is reminiscent of some supernova impostors, and its location resembles the isolated environment of SN 2009ip. It is most similar to HD 5980 (in the Small Magellanic Cloud) and GR 290 (also in M33). Whereas these two LBVs exhibited B-type spectra in eruption, MCA-1B is the first clear case where a Wolf–Rayet (WR) spectrum persisted at all times. Together, MCA-1B, HD 5980, and GR 290 constitute a class of WN-type LBVs, distinct from S Doradus LBVs. They are most interesting in the context of LBVs at low metallicity, a possible post-LBV/WR transition in binaries, and as likely Type Ibn supernova progenitors

    Social defeat stress: Mechanisms underlying the increase in rewarding effects of drugs of abuse

    Get PDF
    Social interaction is known to be the main source of stress in human beings, which explains the translational importance of this research in animals. Evidence reported over the last decade has revealed that, when exposed to social defeat experiences (brief episodes of social confrontations during adolescence and adulthood), the rodent brain undergoes remodeling and functional modifications, which in turn lead to an increase in the rewarding and reinstating effects of different drugs of abuse. The mechanisms by which social stress cause changes in the brain and behavior are unknown, and so the objective of this review is to contemplate how social defeat stress induces long-lasting consequences that modify the reward system. First of all, we will describe the most characteristic results of the short- and long-term consequences of social defeat stress on the rewarding effects of drugs of abuse such as psychostimulants and alcohol. Secondly, and throughout the review, we will carefully assess the neurobiological mechanisms underlying these effects, including changes in the dopaminergic system, corticotrophin releasing factor signaling, epigenetic modifications and the neuroinflammatory response. To conclude, we will consider the advantages and disadvantages and the translational value of the social defeat stress model, and will discuss challenges and future directions

    SN 2014ab: An Aspherical Type IIn Supernova with Low Polarization

    Full text link
    We present photometry, spectra, and spectropolarimetry of supernova (SN) 2014ab, obtained through ∼200\sim 200 days after peak brightness. SN 2014ab was a luminous Type IIn SN (MV<−19.14M_V < -19.14 mag) discovered after peak brightness near the nucleus of its host galaxy, VV 306c. Prediscovery upper limits constrain the time of explosion to within 200 days prior to discovery. While SN 2014ab declined by ∼1\sim 1 mag over the course of our observations, the observed spectrum remained remarkably unchanged. Spectra exhibit an asymmetric emission-line profile with a consistently stronger blueshifted component, suggesting the presence of dust or a lack of symmetry between the far side and near side of the SN. The Paβ\beta emission line shows a profile very similar to that of Hα\alpha, implying that this stronger blueshifted component is caused either through obscuration by large dust grains, occultation by optically thick material, or a lack of symmetry between the far side and near side of the interaction region. Despite these asymmetric line profiles, our spectropolarimetric data show that SN 2014ab has little detected polarization after accounting for the interstellar polarization. This suggests that we are seeing emission from a photosphere that has only small deviation from circular symmetry face-on. We are likely seeing a SN IIn with nearly circular symmetry in the plane normal to our line of sight, but with either large-grain dust or significant asymmetry in the density of circumstellar material or SN ejecta along our line of sight. We suggest that SN 2014ab and SN 2010jl (as well as other SNe IIn) may be similar events viewed from different directions.Comment: 20 pages, 19 figure

    A new and unusual LBV-like outburst from a Wolf-Rayet star in the outskirts of M33

    Full text link
    MCA-1B (also called UIT003) is a luminous hot star in the western outskirts of M33, classified over 20yr ago with a spectral type of Ofpe/WN9 and identified then as a candidate luminous blue variable (LBV). Palomar Transient Factory data reveal that this star brightened in 2010, with a light curve resembling that of the classic LBV star AFAnd in M31. Other Ofpe/WN9 stars have erupted as LBVs, but MCA-1B was unusual because it remained hot. It showed a WN-type spectrum throughout its eruption, whereas LBVs usually get much cooler. MCA-1B showed an almost four-fold increase in bolometric luminosity and a doubling of its radius, but its temperature stayed around 29kK. As it faded, it shifted to even hotter temperatures, exhibiting a WN7/WN8-type spectrum, and doubling its wind speed. MCA-1B is reminiscent of some supernova impostors, and its location resembles the isolated environment of SN 2009ip. It is most similar to HD5980 (in the SMC) and GR 290 (also in M33). Whereas these two LBVs exhibited B-type spectra in eruption, MCA-1B is the first clear case where a Wolf-Rayet (WR) spectrum persisted at all times. Together, MCA-1B, HD 5980, and GR 290 constitute a class of WN-type LBVs, distinct from S Doradus LBVs. They are most interesting in the context of LBVs at low metallicity, a possible post-LBV/WR transition in binaries, and as likely Type~Ibn supernova progenitors.Comment: accepted in MNRAS. 20 pages, 15 figure

    The electron-capture origin of supernova 2018zd

    Get PDF
    In the transitional mass range (∼\sim 8-10 solar masses) between white dwarf formation and iron core-collapse supernovae, stars are expected to produce an electron-capture supernova. Theoretically, these progenitors are thought to be super-asymptotic giant branch stars with a degenerate O+Ne+Mg core, and electron capture onto Ne and Mg nuclei should initiate core collapse. However, no supernovae have unequivocally been identified from an electron-capture origin, partly because of uncertainty in theoretical predictions. Here we present six indicators of electron-capture supernovae and show that supernova 2018zd is the only known supernova having strong evidence for or consistent with all six: progenitor identification, circumstellar material, chemical composition, explosion energy, light curve, and nucleosynthesis. For supernova 2018zd, we infer a super-asymptotic giant branch progenitor based on the faint candidate in the pre-explosion images and the chemically-enriched circumstellar material revealed by the early ultraviolet colours and flash spectroscopy. The light-curve morphology and nebular emission lines can be explained with the low explosion energy and neutron-rich nucleosynthesis produced in an electron-capture supernova. This identification provides insights into the complex stellar evolution, supernova physics, cosmic nucleosynthesis, and remnant populations in the transitional mass range.Comment: Author version of the published letter in Nature Astronomy, 28 June 202

    Analytical bias in the measurement of serum 25-hydroxyvitamin D concentrations impairs assessment of vitamin D status in clinical and research settings

    Get PDF
    Measured serum 25-hydroxyvitamin D concentrations vary depending on the type of assay used and the specific laboratory undertaking the analysis, impairing the accurate assessment of vitamin D status. We investigated differences in serum 25-hydroxyvitamin D concentrations measured at three laboratories (laboratories A and B using an assay based on liquid chromatography-tandem mass spectrometry and laboratory C using a DiaSorin Liaison assay), against a laboratory using an assay based on liquid chromatography-tandem mass spectrometry that is certified to the standard reference method developed by the National Institute of Standards and Technology and Ghent University (referred to as the ‘ certified laboratory ’ ). Separate aliquots from the same original serum sample for a subset of 50 participants from the Ausimmune Study were analysed at the four laboratories. Bland-Altman plots were used to visually check agreement between each laboratory against the certified laboratory. Compared with the certified laboratory, serum 25-hydroxyvitamin D concentrations were on average 12.4 nmol/L higher at laboratory A (95% limits of agreement: -17 .8,42.6); 12.8 nmol/L higher at laboratory B (95% limits of agreement: 0.8,24.8); and 10.6 nmol/L lower at laboratory C (95% limits of agreement: -48.4,27.1). The prevalence of vitamin D deficiency (defined here as 25-hydroxyvitamin D < 50 nmol/L) was 24%, 16%, 12% and 41% at the certified laboratory, and laboratories A, B, and C, respectively. Our results demonstrate considerable differences in the measurement of 25-hydroxyvitamin D concentrations compared with a certified laboratory, even between laboratories using assays based on liquid chromatography-tandem mass spectrometry, which is often considered the gold-standard assay. To ensure accurate and reliable measurement of serum 25-hydroxyvitamin D concentrations, all laboratories should use an accuracy-based quality assurance system and, ideally, comply with international standardisation effort
    • …
    corecore