184 research outputs found
Estimate of blow-up and relaxation time for self-gravitating Brownian particles and bacterial populations
We determine an asymptotic expression of the blow-up time t_coll for
self-gravitating Brownian particles or bacterial populations (chemotaxis) close
to the critical point. We show that t_coll=t_{*}(eta-eta_c)^{-1/2} with
t_{*}=0.91767702..., where eta represents the inverse temperature (for Brownian
particles) or the mass (for bacterial colonies), and eta_c is the critical
value of eta above which the system blows up. This result is in perfect
agreement with the numerical solution of the Smoluchowski-Poisson system. We
also determine the asymptotic expression of the relaxation time close but above
the critical temperature and derive a large time asymptotic expansion for the
density profile exactly at the critical point
Critical dynamics of self-gravitating Langevin particles and bacterial populations
We study the critical dynamics of the generalized Smoluchowski-Poisson system
(for self-gravitating Langevin particles) or generalized Keller-Segel model
(for the chemotaxis of bacterial populations). These models [Chavanis & Sire,
PRE, 69, 016116 (2004)] are based on generalized stochastic processes leading
to the Tsallis statistics. The equilibrium states correspond to polytropic
configurations with index similar to polytropic stars in astrophysics. At
the critical index (where is the dimension of space),
there exists a critical temperature (for a given mass) or a
critical mass (for a given temperature). For or
the system tends to an incomplete polytrope confined by the box (in a
bounded domain) or evaporates (in an unbounded domain). For
or the system collapses and forms, in a finite time, a Dirac peak
containing a finite fraction of the total mass surrounded by a halo. This
study extends the critical dynamics of the ordinary Smoluchowski-Poisson system
and Keller-Segel model in corresponding to isothermal configurations with
. We also stress the analogy between the limiting mass of
white dwarf stars (Chandrasekhar's limit) and the critical mass of bacterial
populations in the generalized Keller-Segel model of chemotaxis
On convergence of solutions of fractal Burgers equation toward rarefaction waves
In the paper, the large time behavior of solutions of the Cauchy problem for
the one dimensional fractal Burgers equation with is studied. It is shown that if the
nondecreasing initial datum approaches the constant states ()
as , respectively, then the corresponding solution converges
toward the rarefaction wave, {\it i.e.} the unique entropy solution of the
Riemann problem for the nonviscous Burgers equation.Comment: 15 page
Continuous dependence estimates for nonlinear fractional convection-diffusion equations
We develop a general framework for finding error estimates for
convection-diffusion equations with nonlocal, nonlinear, and possibly
degenerate diffusion terms. The equations are nonlocal because they involve
fractional diffusion operators that are generators of pure jump Levy processes
(e.g. the fractional Laplacian). As an application, we derive continuous
dependence estimates on the nonlinearities and on the Levy measure of the
diffusion term. Estimates of the rates of convergence for general nonlinear
nonlocal vanishing viscosity approximations of scalar conservation laws then
follow as a corollary. Our results both cover, and extend to new equations, a
large part of the known error estimates in the literature.Comment: In this version we have corrected Example 3.4 explaining the link
with the results in [51,59
Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2
In this paper we prove finite-time blowup of radially symmetric solutions to
the quasilinear parabolic-parabolic two-dimensional Keller-Segel system for any
positive mass. This is done in case of nonlinear diffusion and also in the case
of nonlinear cross-diffusion provided the nonlinear chemosensitivity term is
assumed not to decay. Moreover, it is shown that the above-mentioned lack of
non-decay assumption is essential with respect to keeping the dichotomy
finite-time blowup against boundedness of solutions. Namely, we prove that
without the non-decay assumption possible asymptotic behaviour of solutions
includes also infinite-time blowup.Comment: 14 page
Multiple peak aggregations for the Keller-Segel system
In this paper we derive matched asymptotic expansions for a solution of the
Keller-Segel system in two space dimensions for which the amount of mass
aggregation is , where Previously available asymptotics
had been computed only for the case in which N=1
The one-dimensional Keller-Segel model with fractional diffusion of cells
We investigate the one-dimensional Keller-Segel model where the diffusion is
replaced by a non-local operator, namely the fractional diffusion with exponent
. We prove some features related to the classical
two-dimensional Keller-Segel system: blow-up may or may not occur depending on
the initial data. More precisely a singularity appears in finite time when
and the initial configuration of cells is sufficiently concentrated.
On the opposite, global existence holds true for if the initial
density is small enough in the sense of the norm.Comment: 12 page
Spikes and diffusion waves in one-dimensional model of chemotaxis
We consider the one-dimensional initial value problem for the viscous
transport equation with nonlocal velocity with a given kernel . We show the existence
of global-in-time nonnegative solutions and we study their large time
asymptotics. Depending on , we obtain either linear diffusion waves ({\it
i.e.}~the fundamental solution of the heat equation) or nonlinear diffusion
waves (the fundamental solution of the viscous Burgers equation) in asymptotic
expansions of solutions as . Moreover, for certain aggregation
kernels, we show a concentration of solution on an initial time interval, which
resemble a phenomenon of the spike creation, typical in chemotaxis models
Anomalous diffusion and collapse of self-gravitating Langevin particles in D dimensions
We address the generalized thermodynamics and the collapse of a system of
self-gravitating Langevin particles exhibiting anomalous diffusion in a space
of dimension D. The equilibrium states correspond to polytropic distributions.
The index n of the polytrope is related to the exponent of anomalous diffusion.
We consider a high-friction limit and reduce the problem to the study of the
nonlinear Smoluchowski-Poisson system. We show that the associated Lyapunov
functional is the Tsallis free energy. We discuss in detail the equilibrium
phase diagram of self-gravitating polytropes as a function of D and n and
determine their stability by using turning points arguments and analytical
methods. When no equilibrium state exists, we investigate self-similar
solutions describing the collapse. These results can be relevant for
astrophysical systems, two-dimensional vortices and for the chemotaxis of
bacterial populations. Above all, this model constitutes a prototypical
dynamical model of systems with long-range interactions which possesses a rich
structure and which can be studied in great detail.Comment: Submitted to Phys. Rev.
- âŠ