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Abstract In this note we show finite-time blowup of radially symmetric solutions to the
quasilinear parabolic-parabolic two-dimensional Keller-Segel system for any positive mass.
We prove this result by slightly adapting M. Winkler’s method, which he introduced in
(Winkler in J. Math. Pures Appl., 10.1016/j.matpur.2013.01.020, 2013) for the semilinear
Keller-Segel system in dimensions at least three, to the two-dimensional setting. This is done
in the case of nonlinear diffusion and also in the case of nonlinear cross-diffusion provided
the nonlinear chemosensitivity term is assumed not to decay. Moreover, it is shown that
the above-mentioned non-decay assumption is essential with respect to keeping the finite-
time blowup result. Namely, we prove that without the non-decay assumption solutions exist
globally in time, however infinite-time blowup may occur.
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1 Introduction

In the present note we deal with solutions (u, v) of the parabolic-parabolic Keller-Segel
system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut = ∇ · (φ(u)∇u) − ∇ · (ψ(u)∇v), x ∈ Ω, t > 0,

vt = �v − v + u, x ∈ Ω, t > 0,

∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x,0) = u0(x), v(x,0) = v0(x), x ∈ Ω,

(1.1)

T. Cieślak (�)
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in a ball Ω = BR ⊂ R
2, R > 0, where the initial data are supposed to satisfy u0 ∈ C0(Ω̄)

and v0 ∈ W 1,∞(Ω) such that u0 ≥ 0 and v0 ≥ 0 in Ω̄ .
Moreover, let φ,ψ ∈ C2([0,∞)) such that

φ(s) > 0, ψ(s) = sβ(s), and β(s) > 0 for s ∈ [0,∞) (1.2)

are fulfilled with some β ∈ C2([0,∞)).
Let us introduce the following notation. Suppose that there exist s0 > 1 and positive

constants a and b such that the functions

G(s) :=
∫ s

s0

∫ σ

s0

φ(τ)

ψ(τ)
dτ dσ, s > 0, and H(s) :=

∫ s

0

σφ(σ)

ψ(σ)
dσ, s ≥ 0, (1.3)

satisfy

G(s) ≤ as(ln s)μ, s ≥ s0, (1.4)

with some μ ∈ (0,1) as well as

H(s) ≤ b
s

ln s
, s ≥ s0. (1.5)

We remark that H in (1.3) is well-defined due to the positivity of β in [0,∞).
Moreover, assume that

ψ(s) ≥ c0s, s ≥ 0. (1.6)

Next we introduce the well-known Lyapunov functional for the Keller-Segel system.

F (u, v) := 1

2

∫

Ω

|∇v|2 + 1

2

∫

Ω

v2 −
∫

Ω

uv +
∫

Ω

G(u) (1.7)

is a Lyapunov functional for (1.1) with dissipation rate

D(u, v) :=
∫

Ω

v2
t +

∫

Ω

ψ(u) ·
∣
∣
∣
∣
φ(u)

ψ(u)
∇u − ∇v

∣
∣
∣
∣

2

. (1.8)

More precisely, any classical solution to (1.1) satisfies

d

dt
F

(
u(·, t), v(·, t)) = −D

(
u(·, t), v(·, t)) for all t ∈ (

0, Tmax(u0, v0)
)
, (1.9)

where Tmax(u0, v0) ∈ (0,∞] denotes the maximal existence time of (u, v) (see [22,
Lemma 2.1]).

Our main result is a finite-time blowup in the case of a quasilinear problem provided the
nonlinear chemosensitivity term satisfies ψ(u) ≥ Cuq with some q ≥ 1 and C > 0. This
result is a two-dimensional extension of our results in [9] and dimension two plays an im-
portant role from the point of view of biological interpretation of the results. The considered
system (1.1) was introduced in [15] to describe the motion of cells on a surface, where the
cells are diffusing and moving towards the gradient of a substance called chemoattractant,
the latter being produced by the cells themselves. The main motivation was to describe the
chemotactic collapse of cells interpreted as finite-time blowup of the component u of a so-
lution to (1.1). However, almost all results concerning the finite-time blowup of solutions
to (1.1) were proved for its parabolic-elliptic simplification. Main achievements concerning
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this issue are contained in [3, 14, 18] stating the chemotactic collapse for a semilinear sys-
tem, i.e. φ(u) = 1 and ψ(u) = u, provided that the initial mass exceeds 8π in the radially
symmetric case ([18]) or 4π in the case of solutions without the assumption of symmetry
([19]). Moreover, it has been shown that in higher dimensions a finite-time blowup of solu-
tions to the semilinear version of (1.1) can occur independently of the initial mass provided
that the initial data are concentrated enough [18]. Thanks to more careful studies, more
refined conditions on initial data yielding blowup have been identified (see [2]) and the de-
tailed quantitative way of the occurrence of blowup has been shown, see for instance [11,
16, 17]. Next the situation when the initial data have critical mass has been studied ([4–6]).
Finally, in the case of a quasilinear system, for any space dimension n critical nonlineari-
ties have been identified such that if φ and ψ satisfy the subcritical relation, then solutions
to (1.1) stay bounded for any time, while for those satisfying the supercritical relation solu-
tions blow up in finite time independently of the magnitude of initial mass provided the data
are concentrated enough, see [10].

However, all those results are available only for a parabolic-elliptic simplification
of (1.1). In the case of the original fully parabolic version the investigation of chemotac-
tic collapse turned out to be a much more challenging issue. So far the only existing result in
the literature showing the occurrence of finite-time blowup of solutions to (1.1) in space di-
mension 2 is the one in [12], where some special solutions to the semilinear version of (1.1)
in dimension n = 2 blowing up in a finite time are constructed. Those solutions have a mass
larger than 8π and their behavior near the blowup time is described in details. Moreover,
there are a few results concerning other dimensions. In [8] the explosion of solutions to the
one-dimensional Keller-Segel system with appropriately weak diffusion of cells, large mass
and sufficiently fast diffusion of chemoattractant is shown. In [23] M. Winkler introduced a
new method which led him to the finite-time blowup of solutions to the semilinear Keller-
Segel system in dimensions n ≥ 3. His method was generalized in [9] and the result was
extended to the quasilinear case for the optimal range of nonlinearities. This way, to the best
of our knowledge, we present a first result concerning a finite-time blowup of solutions to
the fully parabolic quasilinear Keller-Segel system in dimension two. Moreover, we show
that an explosion takes place independently of the size of initial mass. This result is proved
in both cases ψ(u) = u (nonlinear diffusion case) and a fully nonlinear cross-diffusion. Both
results are optimal in view of possible nonlinearities generating finite-time blowup. As the
result in [20] shows we prove finite-time blowup for the optimal range of nonlinear diffu-
sion in the case ψ(u) = u. Moreover, at least under the restriction of polynomial nonlinear-
ities we have the optimal result provided we accept the non-decay assumption on nonlinear
chemotactic sensitivity, see [21]. On the other hand, again assuming the non-decay of ψ ,
even without assuming nonlinearities to be polynomial we still have the exhaustive finite-
time blowup result, see [7]. Next, it is shown that the above-mentioned non-decay assump-
tion is essential for finding critical exponents distinguishing between finite-time blowup and
boundedness in the case of nonlinear cross-diffusion. Despite the fact that nonlinearities
considered in that case seem to be from the finite-time blowup regime, we construct solu-
tions to (1.1) in dimension 2 which blow up in infinite time when the nonlinear chemotactic
sensitivity term is decreasing.

For any φ and ψ from the class defined in the beginning, in view of the Amann theory for
parabolic systems ([1]), we have the local existence of smooth solutions in any dimension
n ≥ 1. Moreover, the solution (u, v) is positive for t > 0 provided (u0, v0) �≡ (0,0) and
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preserves mass as well as radial symmetry. In particular, it satisfies
∫

Ω

u(x, t) dx =
∫

Ω

u0(x) dx and
∫

Ω

v(x, t) dx ≤ max

{∫

Ω

u0(x) dx,

∫

Ω

v0(x) dx

}

(1.10)
for all t ∈ (0, Tmax(u0, v0)), where Tmax(u0, v0) is the maximal time of existence of solu-
tions. Furthermore, for solutions which cease to exist for all positive times, ‖u(·, t)‖L∞(Ω)

blows up in finite time. For the details we refer to [9, Lemma 2.1].
Our main theorems are the following.

Theorem 1.1 Suppose that Ω = BR ⊂ R
2 with some R > 0, assume also that (1.4), (1.5),

and (1.6) are satisfied. Next let m > 0 and A > 0 be given. Then there exist positive constants
T (m,A) and K(m) such that for any

(u0, v0) ∈ B(m,A) :=
{

(u0, v0) ∈ C0(Ω̄) × W 1,∞(Ω)
∣
∣

u0 and v0 are radially symmetric

and positive in Ω̄,

∫

Ω

u0 = m,‖v0‖W1,2(Ω) ≤ A,

and F (u0, v0) ≤ −K(m) · (1 + A2
)
}

, (1.11)

the corresponding solution (u, v) of (1.1) blows up at the finite time Tmax(u0, v0) ∈ (0,∞),
where Tmax(u0, v0) ≤ T (m,A). Furthermore, for any m > 0 there exists A > 0 such that the
set B(m,A) is nonempty.

Next let us introduce the following corollary simplifying our result in the case of ψ(u) :=
u. It covers the interesting case of a system with nonlinear diffusion. The result is optimal
in view of its global existence counterpart proved in [20].

Corollary 1.2 Assume that ψ(s) = s for s ≥ 0 and that φ(s) ≤ Csq , s ≥ 1, for some q < 0
and C > 0. Furthermore, suppose that φ is a decreasing function. Let Ω = BR ⊂ R

2 with
some R > 0, and let m > 0 and A > 0 be given. Then there exist positive constants T (m,A)

and K(m) such that for any (u0, v0) ∈ B(m,A) the corresponding solution (u, v) of (1.1)
blows up at the finite time Tmax(u0, v0) ≤ T (m,A).

Actually, we can give a more detailed description of nonlinear functions φ and ψ yielding
finite-time blowup. It is based on [22, Corollary 5.2(i)].

Corollary 1.3 If there exist C > 0 and s0 > 1 such that

ψ(s)

φ(s)
≥ Cs log s for any s > s0 > 1, (1.12)

then (1.4) and (1.5) are satisfied. Consequently, the finite-time blowup claim of Theorem 1.1
holds if (1.6) and (1.12) are satisfied.

Next we introduce a theorem stating the essentiality of assumption (1.6) for the di-
chotomy finite-time blowup against the boundedness of solutions. Namely we show that
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solutions exist for any time once assumption (1.6) is not prescribed. Moreover, we indicate
examples of solutions blowing up in infinite time in that case. This theorem is an extension
of [9, Theorem 1.6] to the two-dimensional case. The proof requires essentially different
estimates than the one used in the proof of [9, Theorem 1.6]. Actually, for the purpose of the
present note we just need its two-dimensional part. However, since the proof is the same in
higher dimensions, we give the version of the theorem which is valid for any space dimen-
sion larger than one. Let us recall that according to (1.2) the function β is related to ψ by
the identity ψ(s) = sβ(s), s ≥ 0.

Theorem 1.4 Let Ω ⊂ R
n be a bounded domain with smooth boundary and n ≥ 2. Assume

that there are D1 > 0 and γ1 > n such that for any s ≥ 0

β2(s)

φ(s)
≤ D1(1 + s)−γ1 (1.13)

is satisfied. Moreover, suppose that there exist constants C1,C2 > 0 and l1, l2 ∈ R such that
φ and β satisfy

φ(s) ≥ C1(1 + s)l1 and β(s) ≤ C2(1 + s)l2 for any s ≥ 0. (1.14)

Then for any initial data (u0, v0) ∈ C0(Ω̄) × W 1,∞(Ω) there exists a unique global-in-time
solution (u, v) to (1.1).

Furthermore, if additionally (1.4) and (1.5) are fulfilled, n = 2 and Ω is a ball, then there
is a global-in-time radially symmetric solution (u, v) to (1.1) which blows up in infinite time
with respect to the L∞ norm.

The goal of the following remark is to show that without assuming (1.6) we still can
choose such φ and β that (1.4), (1.5) and the assumptions of Theorem 1.4 are satisfied at the
same time.

Remark 1.5 Let n = 2 and choose φ(s) = (1 + s)−γ1−2γ2 and β(s) = (1 + s)−γ1−γ2 with
some γ1 > 2 and γ2 ∈ (0,1). Then (1.13) as well as (1.14) and at the same time (1.4)
and (1.5) are satisfied.

2 Strategy of the Proof of Finite-Time Blowup

The main idea we use is a recent method introduced by M. Winkler in [23]. He used it
in order to prove finite-time blowup for the semilinear Keller-Segel system in dimensions
n ≥ 3. We extended his method to the quasilinear system (1.1) in [9]. Although the orig-
inal ideas appeared for the first time in [23], in the present note we will frequently re-
fer to the results of [9] because the estimates there are very precise with respect to con-
stants.

Here we slightly adapt the method to treat also the biologically relevant two-dimensional
case. Actually, the only essential change is Lemma 2.4 which relies on the two-dimensional
setting and whose proof will be given in Sect. 3. As the other parts of the proof of
finite-time blowup remain the same as in [9, Sect. 3] and [23, Sect. 4], we confine our-
selves to present the main steps in this section and refer the reader to [9, 23] for de-
tails.
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The blowup is found as a consequence of the blowup of the Lyapunov functional F
associated to (1.1). In order to arrive at an inequality of the form

d

dt

(−F
(
u(t), v(t)

)) ≥ (
c(−F )

(
u(t), v(t)

) − 1
) 1

θ (2.1)

for t > 0 with some θ ∈ (0,1) and c > 0, we shall prove (2.7) below. Indeed, in view of
(1.9), (2.1) is implied by (2.7) (see Lemma 2.6 below). As a consequence of (2.1) we see
that

F
(
u(t), v(t)

) → −∞
as t → T̄ , for some T̄ < ∞ provided the initial value −F (u0, v0) is large enough. But once
we know that F tends to −∞ at a finite time, we are sure that

∫

Ω
uv dx tends to ∞ as this

integral is the only negative ingredient of F (see (1.7) and (1.3)). Since unboundedness of∫

Ω
uv dx along with the boundedness of Ω yields finite-time blowup of either u or v in L∞,

u blows up in finite time. Hence, in order to prove Theorem 1.1 it is sufficient to show (2.7)
and to provide initial data such that −F (u0, v0) is large enough.

In order to be more precise we introduce the following notation. We fix m > 0, M > 0,
B > 0, and κ = 2 and assume that

∫

Ω

u = m and
∫

Ω

v ≤ M (2.2)

and

v(x) ≤ B|x|−κ for all x ∈ Ω (2.3)

are fulfilled. Furthermore, we define the space

S(m,M,B) :=
{

(u, v) ∈ C1(Ω̄) × C2(Ω̄)
∣
∣ u and v are positive and radially

symmetric satisfying
∂v

∂ν
= 0 on ∂Ω, (2.2), and (2.3)

}

. (2.4)

Next we define

f := −�v + v − u (2.5)

and

g :=
(

φ(u)√
ψ(u)

∇u − √
ψ(u)∇v

)

· x

|x| , x �= 0, (2.6)

for (u, v) ∈ S(m,M,B).
The goal of this section is to prove that the inequality

F (u, v)

Dθ (u, v) + 1
≥ −C(m,M,B) for all (u, v) ∈ S(m,M,B) (2.7)

holds with some constants θ ∈ (0,1) and C(m,M,B) > 0 . We will give the exact depen-
dence of C on M and B .

The main ingredient of the proof of (2.7) is the following estimate of
∫

Ω
uv which is the

two-dimensional version of [9, Lemma 3.1].
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Lemma 2.1 Let (1.5) and (1.6) be fulfilled. Then there are C(m) > 0 and θ := 8
9 such that

all (u, v) ∈ S(m,M,B) satisfy

∫

Ω

uv ≤ C(m) · (1 + M2 + B
4
3
) ·

(

‖�v − v + u‖2θ

L2(Ω)

+
∥
∥
∥
∥

φ(u)√
ψ(u)

∇u − √
ψ(u)∇v

∥
∥
∥
∥

L2(Ω)

+ 1

)

. (2.8)

The first steps of its proof are contained in the following two lemmata that correspond
to [9, Lemma 3.2] and [9, Lemma 3.3]. Their proofs are exactly the same as in [9], one just
needs to fix n = 2 and κ = 2.

Lemma 2.2 For any ε ∈ (0,1) there exists C(ε) > 0 such that for all (u, v) ∈ S(m,M,B)

∫

Ω

uv ≤ (1 + ε)

∫

Ω

|∇v|2 + C(ε) · (1 + M2
) · (‖�v − v + u‖ 4

3
L2(Ω)

+ 1
)

(2.9)

is fulfilled.

Lemma 2.3 For any r0 ∈ (0,R) and ε ∈ (0,1), there exists a constant C(ε,m) > 0 such
that all (u, v) ∈ S(m,M,B) satisfy

∫

Ω\Br0

|∇v|2 ≤ ε

∫

Ω

uv + ε

∫

Ω

|∇v|2

+ C(ε,m) · (1 + M
4
3 + B

4
3
) · {r−8

0 + ‖�v − v + u‖ 4
3
L2(Ω)

}
. (2.10)

Next we introduce Lemma 2.4 whose statement corresponds to [9, Lemma 3.4]. Its proof
contains a main difference between [9] and the present note and will be given in the next
section.

Lemma 2.4 Assume that (1.5) and (1.6) are satisfied. Then there exists C(m) > 0 such that
for all r0 ∈ (0,R) and (u, v) ∈ S(m,M,B)

∫

Br0

|∇v|2 ≤ C(m) ·
{

r0 · ‖�v − v + u‖2
L2(Ω)

+
∥
∥
∥
∥

φ(u)√
ψ(u)

∇u − √
ψ(u)∇v

∥
∥
∥
∥

L2(Ω)

+ ‖v‖2
L2(Ω)

+ 1

}

(2.11)

is fulfilled.

Combining now Lemma 2.3 and Lemma 2.4, we obtain the following estimate of∫

Ω
|∇v|2 which will enable us to estimate the Lyapunov functional F by a sublinear power

of the dissipation rate D. It is the two-dimensional version of [9, Lemma 3.5] and is proved
along the same lines upon the choices n = 2, κ = 2 and μ = 0.
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Lemma 2.5 Suppose that (1.5) and (1.6) are fulfilled and let θ = 8
9 . Then for any ε ∈ (0, 1

2 )

there exists C(ε,m) > 0 such that

∫

Ω

|∇v|2 ≤ C(ε,m) · (1 + M2 + B
4
3
) ·

(

‖�v − v + u‖2θ

L2(Ω)

+
∥
∥
∥
∥

φ(u)√
ψ(u)

∇u − √
ψ(u)∇v

∥
∥
∥
∥

L2(Ω)

+ 1

)

+ ε

1 − 2ε

∫

Ω

uv (2.12)

is fulfilled for all (u, v) ∈ S(m,M,B).

In view of Lemma 2.2 and Lemma 2.5, the proof of Lemma 2.1 is now the same as of [9,
Lemma 3.1] (with μ = η = 0).

Let us finally show how the Lyapunov functional F can be estimated according to (2.7)
(see [23, Theorem 5.1]).

Lemma 2.6 Assume that (1.5) and (1.6) are satisfied and let θ = 8
9 . Then there exists

C(m) > 0 such that

F (u, v) ≥ −C(m) · (1 + M2 + B
4
3
) · (Dθ (u, v) + 1

)
(2.13)

is fulfilled for all (u, v) ∈ S(m,M,B), where F and D are given in (1.7) and (1.8), respec-
tively.

Proof In view of (2.5), (2.6), and θ > 1
2 , an application of Young’s inequality to (2.8) implies

the existence of c1 = C1(m) · (1 + M2 + B
4
3 ) > 0 such that

∫

Ω

uv ≤ c1

((‖f ‖2
L2(Ω)

+ ‖g‖2
L2(Ω)

)θ + 1
)
.

As moreover (1.2) and (1.3) imply that G is nonnegative, we deduce that

F (u, v) = 1

2

∫

Ω

|∇v|2 + 1

2

∫

Ω

v2 −
∫

Ω

uv +
∫

Ω

G(u)

≥ −c1 · ((‖f ‖2
L2(Ω)

+ ‖g‖2
L2(Ω)

)θ + 1
)
.

Since (1.8), (2.5), and (2.6) imply D(u, v) = ‖f ‖2
L2(Ω)

+ ‖g‖2
L2(Ω)

, the claim is proved. �

This estimate enables us to prove the finite-time blowup of solutions to (1.1) like
in [9, 23].

Proof of Theorem 1.1 Since the proof of [23, Corollary 3.3] is based on estimates com-
ing only from the second equation of (1.1) and it is not changed for dimension n = 2, the
corollary remains true with κ = 2. Consequently, we know that v(t) satisfies (2.3) for all
t ∈ (0, Tmax(u0, v0)) with

B ≤ C
(‖u0‖L1(Ω) + ‖v0‖L1(Ω) + ‖∇v0‖L2(Ω)

)
.

Next the proof of Theorem 1.1 splits into two parts. The part of Theorem 1.1 concerning
finite-time blowup of solutions provided they start from initial data belonging to B(m,A)
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follows exactly the lines of [23, Lemma 5.2]. The exact dependence of F (u0, v0) on A can
be shown like in [9, Lemma 4.1]. Furthermore, given an arbitrary m > 0, [22, Lemma 4.1]
guarantees the existence of A > 0 such that the set B(m,A) is nonempty. Indeed, choos-
ing the functions (uη, vη), η > 0, which are defined there, we see that for η small enough
F (uη, vη) ≤ −K(m) · (1 + A2

η) is satisfied with Aη = ‖vη‖W1,2(Ω) and conclude that
B(m,Aη) �= ∅. �

3 Main Estimate in the Proof of Finite-Time Blowup

The present section is devoted to proving Lemma 2.4 which is the main contribution of
our note with respect to the estimates showing finite-time blowup. The estimates starting
from (3.3) rely on the specific properties of the two-dimensional setting and they lead to
an optimal result with respect to the nonlinearities guaranteeing finite-time blowup. The
main point is to handle the function r1−n which is not integrable at 0 in the present setting
unlike in the previously studied case n ≥ 3. As the proof of (3.3) only relies on the proof
of [23, Lemma 4.4] and is just the two-dimensional version of the proof of [9, (3.30)], we
just present a few important steps of this part and refer the reader to the original sources for
details.

Proof of Lemma 2.4 Since u and v are radially symmetric, (2.5) and (2.6) imply

(rvr)r = −ru − rf + rv and vr = φ(u)

ψ(u)
ur − g√

ψ(u)
. (3.1)

Using this as a starting point and taking an arbitrary δ > 0, we obtain after some steps
(including an ODE comparison) the inequality

r2v2
r (r) ≤ −2

∫ r

0
eδ(r−ρ)ρ2 u(ρ)φ(u(ρ))

ψ(u(ρ))
ur(ρ) dρ + 2

∫ r

0
eδ(r−ρ)ρ2 u(ρ)√

ψ(u(ρ))
g(ρ)dρ

+ 1

δ

∫ r

0
eδ(r−ρ)ρ2f 2(ρ) dρ +

∫ r

0
eδ(r−ρ)ρ2

(
v2

)

r
(ρ) dρ (3.2)

for all r ∈ (0,R). Fixing now δ ∈ (0, 2
R
) and using (1.6) as well as the nonnegativity of H ,

we estimate each of the terms on the right-hand side separately and obtain a constant
c1(m) > 0 such that

r2v2
r (r) ≤ 4eδR

∫ r

0
ρH

(
u(ρ)

)
dρ

+ c1(m)

2π
r‖g‖L2(Ω) + c1(m)

2π
r‖f ‖2

L2(Ω)
+ r2v2(r), r ∈ (0,R).

Multiplying this inequality by 2πr−1 and integrating over r ∈ (0, r0), we conclude that

∫

Br0

|∇v|2 = 2π

∫ r0

0
rv2

r (r) dr

≤ 8πeδR

∫ r0

0
r−1

∫ r

0
ρH

(
u(ρ)

)
dρ dr
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+ c1(m)R‖g‖L2(Ω) + c1(m)r0‖f ‖2
L2(Ω)

+ ‖v‖2
L2(Ω)

(3.3)

which is the two-dimensional version of [9, (3.30)].
The remaining step of the proof of (2.11) is an estimate of the first term on the right-hand

side which makes use of the two-dimensional setting and is different from [9, 23]. To this
end, we adapt an idea used in [22, Lemma 3.3] and first claim that

H(s) ln
(
H(s)

) ≤ c2(1 + s), s ≥ 0, (3.4)

is fulfilled with some positive constant c2. In view of (1.5) there exists c3 > 0 such that

H(s) ln
(
H(s)

) ≤ b
s

ln s
· ln

(
bs

ln s

)

= b
s

ln s
·
(

ln s + ln

(
b

ln s

))

≤ c3(1 + s), s ≥ s0,

which implies (3.4) due to (1.2) and the definition of H in (1.3). Let us further recall that
Young’s inequality

AB ≤ 1

e
eA + B lnB (3.5)

holds for all A,B > 0. Applying now Fubini’s theorem to the first term on the right-hand
side of (3.3) and using (3.5) and (3.4), we obtain

8πeδR

∫ r0

0
r−1

∫ r

0
ρH

(
u(ρ)

)
dρ dr

= 8πeδR

∫ r0

0

(∫ r0

ρ

r−1 dr

)

ρH
(
u(ρ)

)
dρ

= 8πeδR

∫ r0

0
ln

(
r0

ρ

)

ρH
(
u(ρ)

)
dρ

≤ 8πeδR

∫ r0

0

(
1

e
· r0

ρ
· ρ + ρH

(
u(ρ)

)
ln

(
H

(
u(ρ)

))
)

dρ

≤ 8πeδR

∫ r0

0

(
r0

e
+ ρc2

(
1 + u(ρ)

)
)

dρ ≤ c4r
2
0 + c4

∫

Br0

u ≤ c4R
2 + c4m

with some c4 > 0. In the light of (3.3) the lemma is proved. �

4 Infinite-Time Blowup

This section is devoted to the proof of Theorem 1.4. To this end we first prove the following
lemma which generalizes [9, Lemma 5.1].

Lemma 4.1 Let Ω ⊂ R
n be a bounded domain with some n ≥ 2. Moreover, assume that

(1.13) holds. Then there exists p > n such that for any solution (u, v) to (1.1) and any
T ∈ (0,∞) with T ≤ Tmax(u0, v0) there is C > 0 such that u admits the estimate

∥
∥u(·, t)∥∥

Lp(Ω)
≤ C, t ∈ (0, T ). (4.1)



Finite-Time Blowup in a Supercritical Quasilinear Parabolic-Parabolic 145

Proof We fix p ∈ (n, γ1], multiply the first equation of (1.1) by up−1 and the second one by
�v in order to obtain

1

p

d

dt

∫

Ω

up dx + (p − 1)

∫

Ω

φ(u)|∇u|2up−2 dx = (p − 1)

∫

Ω

up−1β(u)∇v∇udx (4.2)

and

1

2

d

dt

∫

Ω

|∇v|2 dx + 1

2

∫

Ω

|�v|2 dx +
∫

Ω

|∇v|2 dx ≤ 1

2

∫

Ω

u2 dx. (4.3)

Writing

up−1β(u) = u
p−2

2
√

φ(u)u
p
2

β(u)√
φ(u)

,

we deduce from (4.2) that

1

p

d

dt

∫

Ω

up dx + p − 1

2

∫

Ω

φ(u)|∇u|2up−2 dx ≤ C

∫

Ω

up β2(u)

φ(u)
|∇v|2 dx. (4.4)

Next adding (4.4) and (4.3), applying (1.13) and using p ≤ γ1, we conclude that

d

dt

(∫

Ω

up dx +
∫

Ω

|∇v|2 dx

)

≤ C

(∫

Ω

up dx

) 2
p

+ C

∫

Ω

|∇v|2

≤ C

(∫

Ω

up dx +
∫

Ω

|∇v|2 dx + 1

)

. (4.5)

Grönwall’s lemma implies the claimed estimate of ‖u‖Lp(Ω). �

Now we can prove the blowup in infinite time by a suitable combination of known results.

Proof of Theorem 1.4 Due to (4.1) and the classical regularity theory of parabolic equa-
tions applied to the second equation of (1.1), see [13, Lemma 4.1] for example, one ob-
tains an estimate of ∇v in L∞(Ω × (0, T )) for any finite T ∈ (0, Tmax(u0, v0)]. Next we
multiply the first equation of (1.1) by up−1, this time for any p ∈ (γ1,∞). Proceeding as
in the proof of Lemma 4.1, we see that the right-hand side of (4.4) can be estimated by
C(‖∇v‖L∞(Ω))

∫

Ω
up−γ1 due to (1.13). Hence, Hölder’s inequality leads to

d

dt

∫

Ω

up dx ≤ C

(∫

Ω

up dx + 1

)

.

Thus, for any p ∈ (1,∞) there exists C > 0 such that ‖u(·, t)‖Lp(Ω) ≤ C is fulfilled for
all t ∈ (0, T ). We are now in a position to apply [21, Lemma A.1] in order to gain an
estimate of u in L∞(Ω × (0, T )) which shows the existence of a global solution. More
precisely, keeping the notation of [21, Lemma A.1], we have f := −uβ(u)∇v and g := 0,
while due to (1.14) we can choose m = l1 + 1 and make sure that uβ(u) grows at most
polynomially with respect to u. Moreover, by the estimates on u we just proved, we have
u ∈ L∞((0, T );Lp0(Ω)) and f ∈ L∞((0, T );Lq1(Ω)) for any p0 ∈ (1,∞) and q1 ∈ (1,∞).
This freedom of choosing any p0 < ∞ as well as any q1 < ∞ enables us to make sure that
all the assumptions of [21, Lemma A.1] are satisfied.

Furthermore, if we additionally assume that (1.4) and (1.5) are satisfied with n = 2, we
apply [22, Theorem 5.1] in order to deduce that (u, v) blows up in infinite time. This finishes
the proof of Theorem 1.4. �
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