96 research outputs found

    Image analysis of the AXAF VETA-I x ray mirror

    Get PDF
    Initial core scan data of the VETA-I x-ray mirror proved disappointing, showing considerable unpredicted image structure and poor measured FWHM. 2-D core scans were performed, providing important insight into the nature of the distortion. Image deconvolutions using a ray traced model PSF was performed successfully to reinforce our conclusion regarding the origin of the astigmatism. A mechanical correction was made to the optical structure, and the mirror was tested successfully (FWHM 0.22 arcsec) as a result

    Pulsed Doppler lidar for the detection of turbulence in clear air

    Get PDF
    A pulsed C02 Doppler lidar system is described and demonstration tests in ground-based and airborne flight operations are discussed. As a ground-based system, it can detect wind shears in thunderstorm gust fronts to a range of 6 km. When in the airborne configuration, the lidar can detect clear air turbulence in advance of the aircraft encountering clear air turbulence. The data provided by the lidar included turbulence location and intensity with intensity being indicated by the measured spectral width which is proportional to the wind gust velocity

    Cotton Variety Tests 1954

    Get PDF
    The Oklahoma Agricultural Experiment Station periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311

    Cotton Variety Tests 1955

    Get PDF
    The Oklahoma Agricultural Experiment Station periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311

    Technology requirements of exploration beyond Neptune by solar sail propulsion

    Get PDF
    This paper provides a set of requirements for the technology development of a solar sail propelled Interstellar Heliopause Probe mission. The mission is placed in the context of other outer solar systems missions, ranging from a Kuiper Belt mission through to an Oort cloud mission. Mission requirements are defined and a detailed parametric trajectory analysis and launch date scan performed. Through analysis of the complete mission trade space a set of critical technology development requirements are identified which include an advanced lightweight composite High-Gain Antenna, a high-efficiency Ka-band travelling-wave tube amplifier and a radioisotope thermoelectric generator with power density of approximately 12 W/kg. It is also shown that the Interstellar Heliopause Probe mission necessitates the use of a spinning sail, limiting the direct application of current hardware development activities. A Kuiper Belt mission is then considered as a pre-curser to the Interstellar Heliopause Probe, while it is also shown through study of an Oort cloud mission that the Interstellar Heliopause Probe mission is the likely end-goal of any future solar sail technology development program. As such, the technology requirements identified to enable the Interstellar Heliopause Probe must be enabled through all prior missions, with each mission acting as an enabling facilitator towards the next

    Origin of the Pseudogap in High-Temperature Cuprate Superconductors

    Full text link
    Cuprate high-temperature superconductors exhibit a pseudogap in the normal state that decreases monotonically with increasing hole doping and closes at x \approx 0.19 holes per planar CuO2 while the superconducting doping range is 0.05 < x < 0.27 with optimal Tc at x \approx 0.16. Using ab initio quantum calculations at the level that leads to accurate band gaps, we found that four-Cu-site plaquettes are created in the vicinity of dopants. At x \approx 0.05 the plaquettes percolate, so that the Cu dx2y2/O p{\sigma} orbitals inside the plaquettes now form a band of states along the percolating swath. This leads to metallic conductivity and below Tc to superconductivity. Plaquettes disconnected from the percolating swath are found to have degenerate states at the Fermi level that split and lead to the pseudogap. The pseudogap can be calculated by simply counting the spatial distribution of isolated plaquettes, leading to an excellent fit to experiment. This provides strong evidence in favor of inhomogeneous plaquettes in cuprates.Comment: 24 pages (4 pages main text plus 20 pages supplement

    Superconducting Fluctuation investigated by THz Conductivity of La2x_{2-x}Srx_xCuO4_4 Thin Films

    Full text link
    Frequency-dependent terahertz conductivities of La2x_{2-x}Srx_xCuO4_4 thin films with various carrier concentrations were investigated. The imaginary part of the complex conductivity considerably increased from far above a zero-resistance superconducting transition temperature, TczeroT_\text{c}^\text{zero}, because of the existence of the fluctuating superfluid density with a short lifetime. The onset temperature of the superconducting fluctuation is at most 2Tczero\sim 2T_\text{c}^\text{zero} for underdoped samples, which is consistent with the previously reported analysis of microwave conductivity. The superconducting fluctuation was not enhanced under a 0.5 T magnetic field. We also found that the temperature dependence of the superconducting fluctuation was sensitive to the carrier concentration of La2x_{2-x}Srx_xCuO4_4, which reflects the difference in the nature of the critical dynamics near the superconducting transition temperature. Our results suggest that the onset temperature of the Nernst signal is not related to the superconducting fluctuation we argued in this paper.Comment: J. Phys. Soc. Jpn. in pres

    A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions

    Get PDF
    Conservation agriculture involves reduced tillage, permanent soil cover and crop rotations to enhance soil fertility and to supply food from a dwindling land resource. Recently, conservation agriculture has been promoted in Southern Africa, mainly for maize-based farming systems. However, maize yields under rain-fed conditions are often variable. There is therefore a need to identify factors that influence crop yield under conservation agriculture and rain-fed conditions. Here, we studied maize grain yield data from experiments lasting 5 years and more under rain-fed conditions. We assessed the effect of long-term tillage and residue retention on maize grain yield under contrasting soil textures, nitrogen input and climate. Yield variability was measured by stability analysis. Our results show an increase in maize yield over time with conservation agriculture practices that include rotation and high input use in low rainfall areas. But we observed no difference in system stability under those conditions. We observed a strong relationship between maize grain yield and annual rainfall. Our meta-analysis gave the following findings: (1) 92% of the data show that mulch cover in high rainfall areas leads to lower yields due to waterlogging; (2) 85% of data show that soil texture is important in the temporal development of conservation agriculture effects, improved yields are likely on well-drained soils; (3) 73% of the data show that conservation agriculture practices require high inputs especially N for improved yield; (4) 63% of data show that increased yields are obtained with rotation but calculations often do not include the variations in rainfall within and between seasons; (5) 56% of the data show that reduced tillage with no mulch cover leads to lower yields in semi-arid areas; and (6) when adequate fertiliser is available, rainfall is the most important determinant of yield in southern Africa. It is clear from our results that conservation agriculture needs to be targeted and adapted to specific biophysical conditions for improved impact
    corecore