14 research outputs found

    The island rule: made to be broken?

    No full text
    The island rule is a hypothesis whereby small mammals evolve larger size on islands while large insular mammals dwarf. The rule is believed to emanate from small mammals growing larger to control more resources and enhance metabolic efficiency, while large mammals evolve smaller size to reduce resource requirements and increase reproductive output. We show that there is no evidence for the existence of the island rule when phylogenetic comparative methods are applied to a large, high-quality dataset. Rather, there are just a few clade-specific patterns: carnivores; heteromyid rodents; and artiodactyls typically evolve smaller size on islands whereas murid rodents usually grow larger. The island rule is probably an artefact of comparing distantly related groups showing clade-specific responses to insularity. Instead of a rule, size evolution on islands is likely to be governed by the biotic and abiotic characteristics of different islands, the biology of the species in question and contingency

    The largest fossil rodent

    No full text
    The discovery of an exceptionally well-preserved skull permits the description of the new South American fossil species of the rodent, Josephoartigasia monesi sp. nov. (family: Dinomyidae; Rodentia: Hystricognathi: Caviomorpha). This species with estimated body mass of nearly 1000 kg is the largest yet recorded. The skull sheds new light on the anatomy of the extinct giant rodents of the Dinomyidae, which are known mostly from isolated teeth and incomplete mandible remains. The fossil derives from San José Formation, Uruguay, usually assigned to the Pliocene–Pleistocene (4–2 Myr ago), and the proposed palaeoenvironment where this rodent lived was characterized as an estuarine or deltaic system with forest communities

    Tuataras and salamanders show that walking and running mechanics are ancient features of tetrapod locomotion

    No full text
    The lumbering locomotor behaviours of tuataras and salamanders are the best examples of quadrupedal locomotion of early terrestrial vertebrates. We show they use the same walking (out-of-phase) and running (in-phase) patterns of external mechanical energy fluctuations of the centre-of-mass known in fast moving (cursorial) animals. Thus, walking and running centre-of-mass mechanics have been a feature of tetrapods since quadrupedal locomotion emerged over 400 million years ago. When walking, these sprawling animals save external mechanical energy with the same pendular effectiveness observed in cursorial animals. However, unlike cursorial animals (that change footfall patterns and mechanics with speed), tuataras and salamanders use only diagonal couplet gaits and indifferently change from walking to running mechanics with no significant change in total mechanical energy. Thus, the change from walking to running is not related to speed and the advantage of walking versus running is unclear. Furthermore, lumbering mechanics in primitive tetrapods is reflected in having total mechanical energy driven by potential energy (rather than kinetic energy as in cursorial animals) and relative centre-of-mass displacements an order of magnitude greater than cursorial animals. Thus, large vertical displacements associated with lumbering locomotion in primitive tetrapods may preclude their ability to increase speed
    corecore