298 research outputs found

    Decentralized nonlinear control for power systems using normal forms and detailed models

    Get PDF
    This paper proposes a decentralized method for nonlinear control of oscillatory dynamics in power systems. The method is applicable for ensuring both transient stability as well as small-signal stability. The method uses an optimal control law which has been derived in the general framework of nonlinear control using normal forms. The model used to derive the control law is the detailed subtransient model of synchronous machines as recommended by IEEE. Minimal approximations have been made in either the derivation or the application of the control law. The developed method also requires the application of dynamic state estimation technique. As the employed control and estimation schemes only need local measurements, the method remains completely decentralized. The method has been demonstrated as an effective tool to prevent blackouts by simulating a major disturbance in a benchmark power system model and its subsequent control using the proposed method

    Decentralized robust dynamic state estimation in power systems using instrument transformers

    Get PDF
    This paper proposes a decentralized method for estimation of dynamic states of a power system. The method remains robust to time-synchronization errors and high noise-levels in measurements. Robustness of the method has been achieved by incorporating internal angle in the dynamic model used for estimation and by decoupling the estimation process into two stages with continuous updation of measurement-noise variances. Additionally, the proposed estimation method does not need measurements obtained from phasor measurement units (PMUs); instead, it just requires analogue measurements of voltages and currents directly acquired from instrument transformers. This is achieved through statistical signal processing of analogue voltages and currents to obtain their magnitudes and frequencies, followed by application of unscented Kalman filtering for nonlinear estimation. The robustness and feasibility of the method have been demonstrated on a benchmark power system model

    An extended linear quadratic regulator for LTI systems with exogenous inputs

    Get PDF
    This paper proposes a cost effective control law for a linear time invariant (LTI) system having an extra set of exogenous inputs (or external disturbances) besides the traditional set of control inputs. No assumption is made with regard to a priori knowledge of the modeling equations for the exogenous inputs. The problem of optimal control for such a system is defined in the standard framework of linear quadratic control and an extended linear quadratic regulator (ELQR) is proposed as the solution to the problem. The ELQR approach is demonstrated through an example and is shown to be significantly more cost effective than currently available approaches for linear quadratic control

    Optimal Wind Farm Cabling

    Get PDF
    Wind farm cable length has a direct impact on the project cost, reliability and electrical losses. The optimum cable layout results in a lower unit cost of generating electricity offshore. This paper explores three cabling structures: the string structure, ring structures and multi-loop structure on a 3D seabed. The newly proposed multi-loop structure increases reliability and proves to be most economic when the failure rate and mean time to repair (MTTR) of cables are relatively high. Particle swarm optimization (PSO) is used to find the optimal substation location that minimizes the overall cable distance

    An extended linear quadratic regulator and its application for control of power system dynamics

    Get PDF
    This paper presents a generalized solution to the problem of optimal control of systems having an extra set of exogenous inputs besides control inputs. The solution is derived in the framework of linear quadratic control and it is termedextended linear quadratic regulator (ELQR)'. The ELQR is applied for control of unstable or poorly damped oscillatory dynamics occurring in a power system and is shown to be significantly more cost effective than the classical power system stabilizer (PSS) based approach

    IoT-Based Applications in Healthcare Devices

    Get PDF
    The last decade has witnessed extensive research in the field of healthcare services and their technological upgradation. To be more specific, the Internet of Things (IoT) has shown potential application in connecting various medical devices, sensors, and healthcare professionals to provide quality medical services in a remote location. This has improved patient safety, reduced healthcare costs, enhanced the accessibility of healthcare services, and increased operational efficiency in the healthcare industry. The current study gives an up-to-date summary of the potential healthcare applications of IoT- (HIoT-) based technologies. Herein, the advancement of the application of the HIoT has been reported from the perspective of enabling technologies, healthcare services, and applications in solving various healthcare issues. Moreover, potential challenges and issues in the HIoT system are also discussed. In sum, the current study provides a comprehensive source of information regarding the different fields of application of HIoT intending to help future researchers, who have the interest to work and make advancements in the field to gain insight into the topic
    • …
    corecore