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Decentralized Nonlinear Control for Power Systems

using Normal Forms and Detailed Models
Abhinav Kumar Singh, Member, IEEE, and Bikash C. Pal, Fellow, IEEE

Abstract—This paper proposes a decentralized method for
nonlinear control of oscillatory dynamics in power systems. The
method is applicable for ensuring both transient stability as well
as small-signal stability. The method uses an optimal control law
which has been derived in the general framework of nonlinear
control using normal forms. The model used to derive the control
law is the detailed subtransient model of synchronous machines
as recommended by IEEE. Minimal approximations have been
made in either the derivation or the application of the control
law. The developed method also requires the application of
dynamic state estimation technique. As the employed control and
estimation schemes only need local measurements, the method
remains completely decentralized. The method has been demon-
strated as an effective tool to prevent blackouts by simulating a
major disturbance in a benchmark power system model and its
subsequent control using the proposed method.

Index Terms—decentralized, nonlinear control, normal form,
subtransient model, feedback linearization, dynamic state estima-
tion, unscented Kalman filtering, lie derivative, optimal control.

NOMENCLATURE

0 denotes a zero matrix (or vector) of appropriate size
φ vector field of state-mapping in normal form transformation
B imaginary part of the bus admittance matrix in p.u.

C(x) characteristic matrix with (i, j) element =Lgj
L

(ri−1)
f hi(x)

D(x) the vector [Lr1
f h1(x) L

r2
f h2(x) . . . L

rm
f hm(x)]T

F vector of machine-state functions
f vector of system state functions, [f1 f2 . . . fn]

T

G real part of the bus admittance matrix in p.u.
gi ith vector of input functions for i = 1, 2, . . . ,m
h vector of output functions, [h1 h2 . . . hm]T

I denotes an identity matrix of appropriate size
Ig column vector of current injections at system buses
p (n− r)×m matrix with (j, i) element = Lgi

φj+r(φ
–1)

q (n− r)× 1 vector with jth element = Lfφj+r(φ
–1)

u vector of inputs, [u1 u2 . . . um]T

V column vector of terminal voltage of system buses
v vector of inputs in normal form, [v1 v2 . . . vm]T

V g vector of terminal voltages of all the machines in the system
w internal dynamics’ state vector, [wr+1 wr+2 . . . wn]

T

x vector of states, [x1 x2 . . . xn]
T

Y denotes an admittance matrix in p.u.
y vector of outputs, [y1 y2 . . . ym]T

Z denotes an impedance matrix in p.u.
z vector of linearized states, [z11 . . . z

1
r1

. . . zm1 . . . zmrm ]T

δ,δ0 rotor angle and its initial operating value, resp., in rad
ω,ω0 rotor-speed and its synchronous value in rad/s, resp.
Ψ1d subtransient emfs due to d axis damper coil in p.u.
Ψ2q subtransient emfs due to q axis damper coil in p.u.
θ bus voltage phase in rad
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D rotor damping constant in p.u.
E′

dc state of the dummy-rotor coil in p.u.
E′

d transient emf due to flux in q-axis damper coil in p.u.
E′

q transient emf due to field flux linkages in p.u.
Efd field excitation voltage in p.u.
H generator inertia constant in s
i,k denote ith machine (or bus) and kth sample, resp.
Ig net current injection at a machine bus in p.u.
Id,Iq d-axis and q-axis stator currents, resp., in p.u.
j denotes jth state or

√
−1, as per context

Ka AVR gain in p.u.
Kd1 the ratio (X ′′

d −Xl)/(X
′

d −Xl)
Kd2 the ratio (X ′

d −X ′′

d )/(X
′

d −Xl)
Kq1 the ratio (X ′′

q −Xl)/(X
′

q −Xl)
Kq2 the ratio (X ′

q −X ′′

q )/(X
′

q −Xl)
L,M denote Lie derivative and total no. of buses, resp.
m,n total machines (=total inputs=total outputs) and states, resp.
P ,Q net active and reactive power injected at a bus, resp., in p.u.
PG,QG active and reactive power output of a machine, resp., in p.u.
r r =

∑m

i=1 ri, where ri is the relative degree of yi
Rs armature resistance in p.u.
t system time in s
T ,T0 denote the transpose and the sampling period (in s), resp.
Tc,Tr time constants for dummy-rotor coil & AVR filter in s, resp.
Te,Tm electrical and mechanical torques, resp., in p.u.
T ′

d0,T ′

q0 d-axis and q-axis transient time constants, resp., in s
T ′′

d0,T ′′

q0 d-axis and q-axis subtransient time constants, resp., in s
V bus terminal voltage magnitude in p.u.
Vd,Vq d-axis and q-axis stator voltages, resp., in p.u.
Vg machine’s terminal bus voltage in p.u. and is equal to V ejθ

Vr ,Vref AVR-filter voltage and AVR-reference voltage, resp., in p.u.
Vss AVR-control input (from the PSS or other controller) in p.u.
Xd,Xq d-axis and q-axis synchronous reactances, resp., in p.u.
X ′

d,X ′

q d-axis and q-axis transient reactances, resp., in p.u.
X ′′

d ,X ′′

q d-axis and q-axis subtransient reactances, resp., in p.u.
Xl armature leakage reactance in p.u.

I. INTRODUCTION

ROTOR angle stability is essential for the stability of

power systems. It refers to “the ability of synchronous

machines of an interconnected power system to remain in

synchronism after being subjected to a disturbance” [1]. A

disturbance to the system can be a large one, such as a three-

phase fault, or a small one, such as a small step-change in

system load. The ability of a power system to recover from a

large disturbance is referred to as transient stability, while its

ability to adequately damp all the system-oscillations after a

small disturbance is referred to as small signal stability.

Corrective measures should be taken in a timely manner

after a disturbance, otherwise it can lead to system separation

- a phenomenon in which the system divides into two groups

of machines and there is a loss of synchronism between

the groups - and ultimately to wide scale blackouts and/or
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islanding in the system. In order to ensure that such a loss in

synchronism does not occur, protective and control actions

should be taken as soon as a disturbance is detected. For

example, a protective action in case of large disturbances is to

clear a fault within its critical clearing time. An example of

control action for both large and small disturbances is to damp

the ensuing system oscillations using power system stabilizers

(PSSs) and/or power oscillation dampers (PODs).

Majority of the control actions which are taken after a

disturbance in a power system use linear control theory. This

requires linearization of power system dynamics at a particular

equilibrium point or at a finite set of equilibrium points

[2]-[4]. Power systems are nonlinear in nature and a large

disturbance (and sometimes even a small one [5]) can alter

the operating point of the system quite significantly from

equilibrium condition(s) [6]. As linearization is applicable

only in the vicinity of equilibrium condition(s), application

of linear control methods can prove to be ineffective at the

altered condition, and can possibly have an adverse effect on

system stability [5], [6]. A logical solution to this problem

is to use nonlinear control methods which remain valid for

any operating condition and not only for conditions which are

close to equilibrium. This solution is the focus of this paper.

The nonlinear control methods which have been proposed

in the power system literature can broadly be divided into

two categories: methods based on normal forms [7]-[12], and

methods based on Lyapunov functions [13]-[17]. In methods

based on normal forms, the dynamics of the system are

transformed into a new form (called as a normal form) using

a curvilinear coordinate system. The transformed system is

such that some or all of the transformed states are defined by

linear differential equations, and at the same time nonlinearity

of the system is exactly preserved in the new form. This

transformation process is known as feedback linearization.

In Lyapunov function based methods, a scalar energy-like

function of the system states is found (called as Lyapunov

function) such that its value is positive at every operating point

(except at equilibrium, where it is zero), and the function is

non-increasing along any trajectory of the system.

An advantage of normal form based methods over Lyapunov

based methods is that a general technique does not exist for

finding a Lyapunov function for a system, while the steps for

finding a normal form are well established. Moreover, as a

normal form is either fully or partially linear, linear control

techniques can be used for the linear part of the normal form,

whereas linear theory is not applicable in general for Lyapunov

based methods. Owing to these advantages, methods based on

normal forms have been considered in detail in this paper.

Over the past twenty five years, an in-depth exploration

of nonlinear control methods based on normal forms has

been conducted for power systems, but almost all of these

methods rely on model simplification and approximations [7]-

[12]. Specifically, some shortcomings of the existing methods

are as follows.

• Classical model is used in these methods to derive the

normal form of power systems. Classical model is a reduced

order representation of a synchronous machine, and the

transient dynamics of the system are incorrectly reflected

in this model. Thus, using a control law which has been

derived using this model can have unexpected or unwanted

effects on the stability of the system.

• The final control expression which is obtained in these meth-

ods is a function of unmeasurable states of the power system

such as rotor angle and transient flux. Approximations are

made in order to represent this control expression as a

function of measurable quantities, such as stator current and

stator terminal voltage. These measurements are acquired

from instrument transformers and phasor measurement units

(PMUs), and noise, harmonics and bad-data are present in

them [18]-[22]. Thus, the control expression can become

grossly erroneous if it is approximated using these mea-

surements, thereby impacting the stability of the system in

a negative manner.

The theory of normal forms has been further explored in

this paper in order to address the above shortcomings, and a

more robust and practical nonlinear control method has been

proposed. The key contributions of this paper are as follows.

• A detailed subtransient model of machines has been used

for developing the control method. This is the recommended

model for transient stability analysis as per IEEE Std 1110-

2002 [23] (also see [24]) and adequately models transient

dynamics in power systems.

• The aforementioned problem of gross approximation in the

final control expression has been eliminated by using esti-

mates of states instead of using directly measured quantities.

• The proposed method is completely decentralized and only

requires local measurements at each generation unit.

• It has been rigorously shown that the power system remains

asymptotically stable under the proposed control.

• The adverse effects of the aforementioned approximations

on the stability of the system have been demonstrated.

Rest of the paper is organized as follows. Section II briefly

describes the basics of nonlinear control using normal forms,

while Sections III–V develop this theory for power systems.

Section VI explains the application of dynamic estimation in

the developed nonlinear control. Section VII presents simu-

lations to demonstrate the practical applicability and imple-

mentability of the method using a benchmark power system

model, and Section VIII concludes the paper.

II. BASICS OF CONTROL USING NORMAL FORMS

A general multi-input-multi-output (MIMO) nonlinear sys-

tem with an equal number of inputs and outputs can be

represented in the following form.

ẋ = f(x) +

m
∑

i=1

gi(x)ui; yi = hi(x), i = 1, 2, . . . ,m (1)

It will be shown in Section III that a power system can also

be represented as (1). Some preliminary definitions which are

required to transform (1) to a normal form are as follows [25].

Definition 1. Lie derivative: The Lie derivative of a differ-

entiable scalar function h(x) of vector x along a vector field

f(x), such that f has same dimension as x, is defined as:

Lfh(x) =
∂h(x)

∂x
f(x) (2)
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Definition 2. Relative degree: For a MIMO nonlinear system

given by (1), the relative degree of output yi with respect to

the input vector u at a state x is the smallest integer ri such

that Lgj
Lri−1
f hi(x) 6= 0 for at least one j ∈ {1, 2, . . . ,m}.

Definition 3. Relative degree set: A MIMO nonlinear system

given by (1) has a relative degree set {r1, r2, . . . , rm} at a state

x if ri is the relative degree of yi, ∀i ∈ {1, 2, . . . ,m} and

the (m ×m) characteristic matrix C(x), with (i, j) element

as Cij(x) = Lgj
L
(ri−1)
f hi(x), is nonsingular. If such a set

exists, the system is said to have a well defined relative degree.

With the above three definitions as a base, following results

are obtained in order to derive a normal form for a MIMO

system described by (1) (as explained in detail in [25]).

Result 1. If a relative degree set {r1, r2, . . . , rm} exists for a

system given by (1), then r = r1 + r2 + · · ·+ rm ≤ n, where

n is the total number of states of the system.

Result 2. (a) Provided that r ≤ n, where r = r1+r2+· · ·+rm
and ri is the relative degree of ith output, define r new states as

zij = φi
j(x) = L

(j−1)
f hi(x) where, for each i ∈ {1, 2, . . . ,m},

j is such that 1 ≤ j ≤ ri. Define zi = [zi1 zi2 . . . z
i
ri ]

T and

z = [z1T z2T . . . zmT ]T . The dynamics for each state of the

new state vector z are given as follows (for 1 ≤ i ≤ m), and

are known as linearized dynamics of the system.

zi1 = hi(x), żij = Lj
fhi(x) = zij+1, 1 ≤ j ≤ ri − 1

żiri = Lri
f hi(x) +

∑m
j=1Lgj

L
(ri−1)
f hi(x)uj = vi

⇒v = D(x) +C(x)u; D,C are as in nomenclature

(3)

(b) If r < n, then define another (n − r) new states, wi =
φi(x), where (r+1) ≤ i ≤ n, such that the nonlinear differen-

tiable mapping of the original states to the new states, φ(x) =
[φ1

1(x) . . . φ
1
r1(x) . . . φ

m
1 (x) . . . φm

rm(x) φr+1(x) . . . φn(x)]
T ,

has a corresponding differentiable inverse mapping, φ–1. That

is, if φ(x) = (z,w), then x = φ–1(z,w). It is always

possible to find such a mapping for a nonlinear system of

form (1) with well defined relative degree. Define w =
[wr+1 wr+2 . . . wn]

T . The dynamics for each state of the state

vector w can be written as follows (for (r+ 1) ≤ i ≤ n) and

are known as internal dynamics of the system.

ẇi = [Lfφi(x) +
∑m

j=1Lgj
φi(x)uj ]x=φ–1(z,w)

⇒ ẇ = q(z,w) + p(z,w)u; q,p as in nomenclature
(4)

(c) The linearized dynamics and internal dynamics (given by

(3) and (4), respectively) represent the system’s normal form.

A simple interpretation of (3) is that the output hi(x) is

repeatedly differentiated with respect to time (ri times, to be

exact) until the input u appears. After this, hi(x) and its time

derivatives
djhi(x)

dtj = Lj
fhi(x), 1 ≤ j ≤ ri−1 are denoted as

a new state vector zi and their dynamics are in a linear form.

Thus, this process is known as feedback linearization and the

linearized dynamics can be controlled using a linear gain of

zi as a state feedback for input vi. But, in such a feedback,

the system’s internal dynamics are unobservable and may be

unstable. Thus, for the overall stability of the system, it is

necessary that besides the linearized dynamics, the internal

dynamics also remain stable for a given feedback control. The

following result formally states the stability criterion [25].

Result 3. A MIMO system given by (1), with normal form

given by (3)-(4), is asymptotically stable for a given initial

condition and a given feedback control if the closed loop

linearized dynamics are asymptotically stable (that is the

closed loop poles are in the left half plane) and the internal dy-

namics are asymptotically stable. If the closed loop linearized

dynamics are asymptotically stable, the asymptotic stability of

internal dynamics is equivalent to the asymptotic stability of

zero dynamics, which are derived from (4) by representing u

in terms of v (using (3), with x = φ–1(z,w)) and by setting z

and v equal to zero. Thus, zero dynamics are given as follows.

ẇ = q(0,w)−p(0,w)(C(φ–1(0,w)))
–1
D(φ–1(0,w)) (5)

III. POWER SYSTEM DYNAMICS & THEIR NORMAL FORM

The subtransient model of machines with four rotor coils

in each machine, known as Model 2.2 [23], has been used

to study power system dynamics (as explained in Section I)

and to derive their normal form. Model of a static automatic

voltage regulator (AVR) is also included with the model of

each machine. Also, all the loads in the system are assumed

to be modelled as constant impedance loads. The dynamic

equations for this model are given as follows [2]-[4] (where i
refers to the system’s ith machine, 1 ≤ i ≤ m).

∆δ̇i = (ωi − ω0) = ∆ωi (where, ∆δi = δi − δi0)

∆ω̇i = ω0

2Hi (T
i
m − T i

e)− Di

2Hi∆ωi

Ė
′i
d = 1

T
′i
q0

[−E
′i
d − (Xi

q −X
′i
q )[K

i
q1I

i
q +Ki

q2
Ψi

2q+E
′i
d

X′i
q −Xi

l

]]

Ė
′i
q =

Ei
fd−E

′i
q +(Xi

d−X
′i
d )[Ki

d1I
i
d+Ki

d2

Ψ
i
1d

−E
′i
q

X
′i
d

−Xi
l

]

T
′i
d0

Ψ̇i
1d = 1

T
′′i
d0

[E
′i
q + (X

′i
d −Xi

l )I
i
d −Ψi

1d]

Ψ̇i
2q = 1

T
′′i
q0

[−E
′i
d + (X

′i
q −Xi

l )I
i
q −Ψi

2q]

Ė
′i
dc =

1
T i
c
[(X

′′i
d −X

′′i
q )Iiq − E

′i
dc]

V̇ i
r = 1

T i
r
[V i − V i

r ], where,

Ei
fd = Ki

a[V
i
ss + V i

ref − V i
r ], E

i
fdmin ≤ Ei

fd ≤ Ei
fdmax

[

Iid
Iiq

]

=

[

Ri
s X

′′i
q

−X
′′i
d Ri

s

]–1 [
E

′i
d K

i
q1 −Ψi

2qK
i
q2 − V i

d

E
′i
q K

i
d1 +Ψi

1dK
i
d2 − V i

q

]

T i
e = ω0

ωi P
i
G, P i

G = V i
d I

i
d + V i

q I
i
q, Qi

G = V i
d I

i
q − V i

q I
i
d

V i
d = −V i sin(δi − θi), V i

q = V i cos(δi − θi)

Iig =
[E

′i
q Ki

d1+Ψi
1dK

i
d2+j{E

′i
d Ki

q1−Ψi
2qK

i
q2−E

′i
dc}]e

jδi

Ri
s+jX

′′i
d

(6)

Using the facts that Rs << X
′′

q , Rs << X
′′

d and Rs is

normally taken as 0 p.u. in power system studies ([2], [26]),

the above expression for Iid and Iiq is simplified as follows.

Iid = (V i
q − E

′i
q K

i
d1 −Ψi

1dK
i
d2)/X

′′i
d

Iiq = (E
′i
d K

i
q1 −Ψi

2qK
i
q2 − V i

d )/X
′′i
q

(7)
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The bus voltages, (V i, θi), 1 ≤ i ≤ M (total number of

buses is M ), are given by the following power flow equations.

P i =
∑M

j=1V
iV j [Gij cos (θi − θj) +Bij sin (θi − θj)]

Qi =
∑M

j=1V
iV j [Gij sin (θi − θj)−Bij cos (θi − θj)]

(8)

In order to apply nonlinear control theory to power systems,

the differential and algebraic equations (DAEs) of the power

system given by (6) and (8) need to be mathematically shown

equivalent to the affine ordinary differential equations (ODEs)

given by (1). This equivalence can be shown for a well-

defined network configuration. Here, a network configuration

is considered to be well-defined if the matrix corresponding

to the equivalent admittance of the network exists and is non-

singular. One example in which the network configuration is

not well defined is during a fault in which the line admittance

of one or more lines becomes infinite, and hence the line-

admittance matrix is undefined and the equivalence fails to

hold for the duration of the fault. For a well-defined network

configuration one way to show the equivalence of these DAEs

and ODEs is by representing each machine as a current

source, Iig (defined in (6)), behind a constant admittance,

1/(Ri
s+jX

′′i
d ). It should be noted that Iig is a function of only

the states of ith machine and not of any algebraic variables.

The network equations in (8) can be written as follows using

basic relation between voltages and current injections.

V = ZAIg; ZA = (Y A)
−1

; Y A = Y N + Y G + Y L (9)

Here, V is column vector of bus voltages; Ig is column

vector of current injections, with ith element equal to Iig
if i is a machine bus, else it is equal to zero; Y N is

network admittance matrix; Y G is diagonal matrix of machine

admittances, with ith diagonal element equal to 1/(Ri
s+jX

′′i
d )

if i is a machine bus, else it is equal to zero; similarly,

Y L is diagonal matrix of load admittances; and Y A and

ZA are augmented matrices of admittance and impedance,

respectively. It should be noted that Y L will change with any

change in load, hence, Y L is a time varying quantity, unless

the loads are constant impedance loads. Thus, modelling loads

as constant impedance loads is required to represent power

system DAEs as ODEs given by (1). Also, Y G and Y N

can always be found for a given well-defined network [2]-

[3]. Thus, as it is assumed that network configuration is well

defined, Y A and ZA exist and are non-singular.

The differential equations in (6) can be written as follows.

ẋi = F i(xi, V i
g ) +

m
∑

i=1

gi
i(x

i)ui (10)

Where, xi is column vector of the ith machine’s states; V i
g is

the machine’s terminal bus voltage and is equal to V iejθ
i

; F i

is the column vector of differential functions in (6); gi
i(x

i) =

[0 0 0
Ki

a

T
′i
d0

0 0 0 0]T and ui = V i
ss. Consolidating (10) for

i = 1, 2, . . . ,m gives the following equation.

ẋ = F (x,V g) +
m
∑

i=1

gi(x)ui (11)

Here x = [x1Tx2T . . .xmT ]T ; F = [F 1TF 2T . . .FmT ]T ;

V g = [V 1
g V 2

g . . . V m
g ]T ; gi(x) = [g1

i
T
g2
i
T
. . . gm

i
T ]T , where

gi
i is defined as before and g

j
i = [0 0 0 0 0 0 0 0]T ∀j 6= i.

As V g is a subset of V (V g only constitutes voltages of

machine buses, while V constitutes voltages of all the buses),

and V = ZAIg (from (9)), hence V g is also a function of

ZAIg . Thus, (11) can be written as follows.

ẋ = F (x,ZAIg) +

m
∑

i=1

gi(x)ui (12)

In the above equation, as Ig is a function of machine states,

x, and ZA represents network parameters for a given network

configuration, both Ig and ZA can be consolidated with F to

form a new function f as follows.

ẋ = f(x) +

m
∑

i=1

gi(x)ui (13)

The above equation is same as (1), and hence this establishes

the equivalence of power system DAEs in (6) and (8) and

the nonlinear affine ODEs in (1) for a given well-defined

network configuration. This idea that DAEs and ODEs are

equivalent for a given network configuration has also been

used to apply nonlinear control theory to power systems in

the current literature [7]-[12]. It should be understood that f

changes as soon as there is any change in any line parameter

or in network structure, e.g. a change in tap position of a

transformer, or if there is any change in load at any bus. Even

though f may change, the above equivalence remains valid

for the new f as long as f remains well defined, that is the

network configuration remains well-defined.

To summarize the above equivalence, with V i
ss as input and

∆δi as output, the power system model given by (6)-(8) can

be represented as (1), with various terms defined as follows.

x = [x1T x2T . . .xmT ]T ,

xi = [∆δi ∆ωi E
′i
d E

′i
q Ψi

1d Ψi
2q E

′i
dc V i

r ]
T ;

f(x) is obtained from (6)-(8) as described above;

ui = V i
ss;

gi(x) = [g1
i
T
g2
i
T
. . . gm

i
T ]T, g

i
i = [0 0 0

Ki
a

T
′i
d0

0 0 0 0]T,

g
j
i = [0 0 0 0 0 0 0 0]T ∀j 6= i;

yi = hi(x) = ∆δi

(14)

The normal form for the above MIMO representation of

power system dynamics is derived as follows.

A. Relative degree

The relative degree of output yi = ∆δi for the MIMO system

given by (1) and (14) is ri = 3, as ri = 3 is the smallest

integer for which Lgj
L
(ri−1)
f ∆δi 6= 0 for at least some j ∈

{1, 2, . . . ,m}. That is,

(a) Lgj
L
(1−1)
f ∆δi = Lgj

∆δi = 0 ∀j ∈ {1, 2, . . . ,m}, and

(b) Lgj
L
(2−1)
f ∆δi = Lgj

Lf∆δi = Lgj
∆ωi =

Kj
a

T
′j

d0

∂∆ωi

∂E
′j
q

= 0

∀j ∈ {1, 2, . . . ,m}, but



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2017.2724022, IEEE
Transactions on Power Systems

5

(c) Lgj
L
(ri−1)
f ∆δi = Lgj

L2
f∆δi = Lgj

LfLf∆δi =

Lgj
Lf∆ωi = Lgj

[ ω0

2Hi (T
i
m−T i

e)− Di

2Hi∆ωi] =
−ω0K

j
a

2HiT
′j

d0

∂T i
e

∂E
′j
q

6=
0 ∀j ∈ {1, 2, . . . ,m}.

The (i, j) element of the (m × m) characteristic ma-

trix C(x) for the system is Cij(x) = Lgj
L
(ri−1)
f ∆δi =

−ω0K
j
a

2HiT
′j

d0

∂T i
e

∂E
′j
q

. The system has a well defined relative degree

provided that C(x) is non-singular. But C(x) is highly

complex and depends not only on the states and parameters of

all the machines, but also on various loads and line parameters.

Thus, it is very difficult to verify the non-singularity of this

matrix. But the existence of a non-singular C(x) is not

necessary for the existence of a normal form. In case of power

systems, the existence of a relative degree for each individual

output is sufficient to derive the normal form (as described

below).

B. Linearized dynamics

As ri = 3 is the relative degree of yi = hi(x) = ∆δi, hence

r = r1 + r2 + · · · + rm = 3m ≤ n = 8m. According to

Result 2(a), 3m new states for the linearized dynamics can be

defined, with 3 states for each of the m machines. Using (3),

the 3 new states for the ith machine are defined as follows.

zi1 =∆δi, żi1 = Lf∆δi = ∆δ̇i = ∆ωi = zi2

żi2 = L2
f∆δi = Lf∆ωi = ∆ω̇i = zi3

żi3 = L3
f∆δi +

∑m
j=1Lgj

L2
f∆δiuj = ∆ω̈i = vi

(15)

C. Internal dynamics

The total number of states of the power system are n = 8m,

and only 3m new states are defined in the linearized dynamics.

Thus, another 5m states need to be defined for the system in

order to completely represent the system’s dynamics, as ex-

plained in Result 2(b). One straightforward way to do this is to

redefine the states [E
′i
d Ψi

2q Ψi
1d E

′i
dc V i

r ]
T of the ith machine

as its new states [wi
1 wi

2 wi
3 wi

4 wi
5]

T = wi. It should be noted

that the state vector w = [wr+1 wr+2 . . . wn]
T in Result 2(b)

is same as w = [w1T w2T . . .wmT ]T in this redefinition.

This definition is not only simple, but it also has an added

advantage that the input ui = V i
ss does not affect the dynamic

equations of these states directly, but only indirectly through

the linearized dynamics. In other words, the term Lgj
φi(x)

in (4) is zero (as
∂E

′i
d

∂E
′j
q

=
∂Ψi

2q

∂E
′j
q

=
∂Ψi

1d

∂E
′j
q

=
∂E

′i
dc

∂E
′j
q

=
∂V i

r

∂E
′j
q

= 0

∀i, j ∈ {1, 2, . . . ,m}) and hence, the term p(z,w)u in (4)

vanishes, and (4) reduces to the following equation.

ẇi
1 = LfE

′i
d = Ė

′i
d , ẇi

2 = LfΨ
i
2q = Ψ̇i

2q,

ẇi
3 = LfΨ

i
1d = Ψ̇i

1d, ẇi
4 = LfE

′i
dc = Ė

′i
dc

ẇi
5 = LfV

i
r = V̇ i

r ; ẇ = q(z,w)

(16)

Therefore, the eight new states for the ith machine, in-

cluding both the linearized dynamics and the internal dy-

namics, are given by [zi1 zi2 zi3 wi
1 wi

2 wi
3 wi

4 wi
5]

T =
[∆δi ∆ωi ∆ω̇i E

′i
d Ψi

2q Ψi
1d E

′i
dc V i

r ]
T . Also, equation (16)

represents the internal dynamics only when the derivatives

Ė
′i
d , Ψ̇i

2q , Ψ̇i
1d, Ė

′i
dc and V̇ i

r are represented in terms of the

new states. Substituting the expression for Iid from (7) in the

expressions for Ė
′i
d and Ψ̇i

2q from (6), followed by substituting

the values of Ki
q1 and Ki

q2 (using the nomenclature section ),

and collecting the coefficients of E
′i
d , Ψi

1d and V i
d , the follow-

ing equations are obtained.

Ė
′i
d = ai11E

′i
d + ai12Ψ

i
2q +

(Xi
q−X

′i
q )(X

′′i
q −Xi

l )

T
′i
q0X

′′i
q (X′i

q −Xi
l
)
V i
d

Ψ̇i
2q = ai21E

′i
d + ai22Ψ

i
2q +

−(X
′i
q −Xi

l )

T
′′i
q0 X′′i

q

V i
d , where,

ai11 = −1
T

′i
q0

[

1 +
(Xi

q−X
′i
q )(Xi

l

2
+X

′i
q X

′′i
q −2X

′′i
q Xi

l )

X′′i
q (X′i

q −Xi
l
)
2

]

ai12 =
−Xi

l (X
i
q−X

′i
q )(X

′i
q −X

′′i
q )

T
′i
q0X

′′i
q (X′i

q −Xi
l
)
2

ai21 =
−Xi

l

T
′′i
q0 X′′i

q

, ai22 =
−X

′i
q

T
′′i
q0 X′′i

q

(17)

Similarly, substituting the expressions for Iiq, Ki
d1 and

Ki
d2 in the expression for Ψ̇i

1d from (6), and collecting the

coefficients of E
′i
d , Ψi

1d and V i
q , the following equation comes.

Ψ̇i
1d =

Xi
l

T
′′i
d0

X
′′i
d

E
′i
q +

−X
′i
d

T
′′i
d0

X
′′i
d

Ψi
1d +

X
′i
d −Xi

l

T
′′i
d0

X
′′i
d

V i
q (18)

As E
′i
q is not equal to any of the new states, it should be

expressed in terms of the new states in the above equation.

Substituting the expressions for Iid and Iiq from (7) in the

expression for T i
e from (6), T i

e comes as follows.

T i
e =

V i
q

ωi

E
′i
d Ki

q1−Ψi
2qK

i
q2−V i

d

X′′i
q /ω0

+
V i
d

ωi

V i
q −E

′i
q Ki

d1−Ψi
1dK

i
d2

X
′′i
d

/ω0

(19)

Substituting the above expression for T i
e in the expression

for ∆ω̇i from (6), the following equations are derived.

∆ω̇i = ω0

2HiT
i
m − ω0

2V i
q

2HiωiX′′i
q

(E
′i
d K

i
q1 −Ψi

2qK
i
q2 − V i

d )

− ω0
2V i

d

2HiωiX
′′i
d

(V i
q − E

′i
q K

i
d1 −Ψi

1dK
i
d2)− Di

2Hi∆ωi

⇒ E
′i
q =

X
′′i
d V i

q K
i
q1

X′′i
q V i

d
Ki

d1

[E
′i
d − Ki

q2

Ki
q1

Ψi
2q]−

Ki
d2

Ki
d1

Ψi
1d +

X
′′i
q −X

′′i
d

X′′i
q

V i
q

+
2HiωiX

′′i
d

ω0
2V i

d
Ki

d1

[∆ω̇i + Di

2Hi∆ωi − ω0

2HiT
i
m]

Plugging the above expression for E
′i
q in (18), and collecting

the coefficients of Ψi
1d and V i

q , the following equation comes.

Ψ̇i
1d =ai31E

′i
d + ai32Ψ

i
2q + ai33Ψ

i
1d + [

X
′i
d

X
′′i
d

− Xi
l

X′′i
q

]
V i
q

T
′′i
d0

+
2HiωiXi

l (X
′

d−Xl)

T
′′i
d0

ω0
2V i

d
(X′′

d
−Xl)

[∆ω̇i + Di

2Hi∆ωi − ω0

2HiT
i
m]

where, ai31 =
−X

′i
l tan (δi

0
+∆δi−θi)(X

′′i
q −Xi

l )(X
′i
d −Xi

l )

T
′′i
d0

X′′i
q (X′i

q −Xi
l
)(X

′′i
d

−Xi
l
)

ai32 =
−(X

′i
q −X

′′i
q )

(X′′i
q −Xi

l
)
ai31, ai33 =

−(X
′i
d −Xi

l )

T
′′i
d0

(20)

Next, the expression for Iiq from (7) is substituted in the

expression for Ė
′i
dc from (6) to obtain the following equation.

Ė
′i
dc = ai41E

′i
d + ai42Ψ

i
2q − 1

T i
c
E

′i
dc −

(X
′′i
d −X

′′i
q )

T i
cX

′′i
q

V i
d

where, ai41 =
Ki

q1(X
′′i
d −X

′′i
q )

T i
cX

′′i
q

, ai42 =
−Ki

q2(X
′′i
d −X

′′i
q )

T i
cX

′′i
q

(21)
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Finally, using the expressions for Ė
′i
d , Ψ̇i

2q, Ψ̇i
1d, Ė

′i
dc and

V̇ i
r (from (17), (20), (21) and (6)) in (16), and replacing ∆δi,

∆ωi, ∆ω̇i, E
′i
d , Ψi

2q , Ψi
1d, E

′i
dc and V i

r with zi1, zi2, zi3, wi
1,

wi
2, wi

3, wi
4 and wi

5, respectively, the internal dynamics are as

follows.

ẇi =aiwi + bi, ∀ i ∈ {1, 2, . . . ,m} where,

ai =













ai11 ai12 0 0 0
ai21 ai22 0 0 0
ai31 ai32 ai33 0 0
ai41 ai42 0 −1

T i
c

0

0 0 0 0 −1
T i
r













, bi=













bi1
bi2
bi3
bi4
bi5













wi =[wi
1 wi

2 wi
3 wi

4 wi
5]

T ,

bi1 =
−(Xi

q−X
′i
q )(X

′′i
q −Xi

l )

T
′i
q0X

′′i
q (X′i

q −Xi
l
)

V i sin (δi0 + zi1 − θi)

bi2 =
(X

′i
q −Xi

l )

T
′′i
q0 X′′i

q

V i sin (δi0 + zi1 − θi),

bi3 =
−2Hi(ω0+zi

2
)Xi

l (X
′

d−Xl)

T
′′i
d0

ω0
2V i sin (δi

0
+zi

1
−θi)(X′′

d
−Xl)

[zi3 +
Di

2Hi z
i
2

− ω0

2HiT
i
m] + [

X
′i
d

X
′′i
d

− Xi
l

X′′i
q

]
V i cos (δi

0
+zi

1
−θi)

T
′′i
d0

bi4 =
(X

′′i
d −X

′′i
q )

T i
cX

′′i
q

V i sin (δi0 + zi1 − θi), bi5 = 1
T i
r
V i

Elements of ai are as in (17)-(21);V i, θi are as in (8) or (9)

(22)

Thus, (15) and (22) completely specify a normal form for

the power system dynamics.

IV. ASYMPTOTIC STABILITY OF ZERO DYNAMICS

The power system will be asymptotically stable under a

nonlinear control method based on normal form if both its

linearized dynamics and internal dynamics are asymptotically

stable, as explained in Section II. The asymptotic stability of

linearized dynamics can be ensured using any desired control

method (provided that the closed-loop linearized dynamics

are not already unstable, or the operating condition has not

crossed some threshold of stability, for example, any system

fault should be cleared before its critical clearing time (CCT)).

From Result 3, if the closed-loop linearized dynamics are

stable, then the internal dynamics will be asymptotically stable

if and only if the zero dynamics are asymptotically stable.

Lemma 1. The zero dynamics for a power system (with

normal form given by (15) and (22)) are asymptotically stable

irrespective of operating condition.

Proof. Using Result 3, the zero dynamics of a power system

for a given initial operating condition are obtained from its

internal dynamics (given by (22)) by putting z = 0, that is,

by putting zi1 = 0, zi2 = 0 and zi3 = 0 for all 1 ≤ i ≤ m.

After substituting ∆ω̇i and ∆ωi with zi3 and zi2, respectively,

the expression for zero dynamics for ∆ω̇i from (6) reduces

to zi3 = ω0

2Hi [T
i
m − T i

e ] − Di

2Hi z
i
2 ⇒ T i

m − T i
e = 0 (as zi2 = 0

and zi3 = 0). Thus, in zero dynamics, T i
m and T i

e are equal.

T i
m and T i

e can be equal (for all 1 ≤ i ≤ m) only if the

system loads and generations are exactly matched and the line

connections and parameters are constant. Thus, P , Q, B and

G in (8) remain constant in zero dynamics, and hence V i and

θi also remain constant for all 1 ≤ i ≤ M . The elements of

bi in (22) also remain constant for zero dynamics, as they are

functions of zi1, zi2, zi3, V i and θi. As bi is a constant for all

1 ≤ i ≤ m, the zero dynamics will be asymptotically stable

if and only if all the eigenvalues of ai are negative for all

1 ≤ i ≤ m [27]. The eigenvalues of ai are the roots of its

following characteristic polynomial.

determinant(ai − λI) = 0

⇒ [[ai11–λ][ai22–λ]–ai12a
i
21][a

i
33–λ][ –1

T i
c

–λ][ –1
T i
r

–λ] = 0
(23)

Three roots of the above equation are λ = ai33, λ = –1
T i
c

, λ =
–1
T i
r

, and the other two roots are the solutions of the following

equation.

λ2 + bλ+ c = 0; b = –ai11 − ai22, c = ai11a
i
22 − ai12a

i
21

⇒ λ = (−b±
√

b2 − 4c)/2 = −(b∓
√

b2 − 4c)/2
(24)

Using (17), c in the above equation is evaluated as follows.

c = −1
T

′i
q0

[

1 +
(Xi

q−X
′i
q )(Xi

l

2
+X

′i
q X

′′i
q −2X

′′i
q Xi

l )

X′′i
q (X′i

q −Xi
l
)
2

]

−X
′i
q

T
′′i
q0 X′′i

q

− −Xi
l (X

i
q−X

′i
q )(X

′i
q −X

′′i
q )

T
′i
q0X

′′i
q (X′i

q −Xi
l
)
2

−Xi
l

T
′′i
q0 X′′i

q

=
X

′i
q

T
′i
q0T

′′i
q0 X′′i

q

+
(Xi

q−X
′i
q )(X

′i
q (Xi

l

2
−2X

′′i
q Xi

l+X
′i
q X

′′i
q )−Xi

l

2
(X

′i
q −X

′′i
q ))

T
′i
q0T

′′i
q0 X′′i

q

2
(X′i

q −Xi
l
)
2

=
X

′i
q

T
′i
q0T

′′i
q0 X′′i

q

+
(Xi

q−X
′i
q )(X

′i
q

2

X
′′i
q +Xi

l

2
X

′′i
q −2X

′i
q Xi

lX
′′i
q )

T
′i
q0T

′′i
q0 X′′i

q

2
(X′i

q −Xi
l
)
2

=
X

′i
q

T
′i
q0T

′′i
q0 X′′i

q

+
(Xi

q−X
′i
q )(X

′i
q −Xi

l )
2

X
′′i
q

T
′i
q0T

′′i
q0 X′′i

q

2
(X′i

q −Xi
l
)
2

=
X

′i
q

T
′i
q0T

′′i
q0 X′′i

q

+
Xi

q−X
′i
q

T
′i
q0T

′′i
q0 X′′i

q

=
Xi

q

T
′i
q0T

′′i
q0 X′′i

q

> 0

Also, as explained in [26], the following inequalities hold.

Xi
q > X

′i
q ≥ X

′i
d > X

′′i
q > Xi

l > 0 (25)

Hence, in (17), ai11 < 0, ai12 < 0, ai21 < 0 and ai22 < 0, and

hence, b = –ai11 − ai22 > 0 and ai12a
i
21 > 0. This also implies

that b2 − 4c = (ai11 + ai22)
2 − 4(ai11a

i
22 − ai12a

i
21) = (ai11 −

ai22)
2 + 4(ai12a

i
21) > 0 and, thus

√
b2 − 4c is a real number

and, hence, is positive, and following inequalities exist.

c > 0, b > 0,
√

b2 − 4c > 0

⇒b2 > b2 − 4c ⇒ b >
√

b2 − 4c > 0

⇒(b∓
√

b2 − 4c)/2 > 0 ⇒ −(b∓
√

b2 − 4c)/2 < 0

(26)

From (24) and (26), λ = −(b∓
√
b2 − 4c)/2 < 0 are two

roots of (23) and the other roots are λ = ai33 =
−(X

′i
d −Xi

l )

T
′′i
d0

< 0

(using (20) and (25)), λ = −1
T i
c
< 0 and λ = −1

T i
r
< 0. Thus

all the five roots of (23) are negative, and ai has negative

eigenvalues for all 1 ≤ i ≤ m. ∴ the zero dynamics are

asymptotically stable.

It should be noted that the above Lemma does not consider,

and is not applicable to, the case when power system state

is at origin, that is when the power system is completely off,

with Tm = Te = 0 for all the machines.
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V. OVERALL STABILITY AND CONTROL EXPRESSION

The internal dynamics of a power system are asymptotically

stable (from Lemma 1 and Result 3), and hence the overall

dynamics of the system will be asymptotically stable if its

linearized dynamics are stabilized using adequate control. The

linearized dynamics from (15) can be written as follows.




żi1
żi2
żi3



 =





0 1 0
0 0 1
0 0 0









zi1
zi2
zi3



+





0
0
1



 vi; 1 ≤ i ≤ m (27)

The above linear dynamics can be asymptotically stabilized

in an optimal manner using the standard linear quadratic regu-

lator (LQR), in which a linear feedback of states is found and

given as input (that is, vi = [Ki
1 Ki

2 Ki
3][z

i
1 zi2 zi3]

T
= Kizi)

such that the sum of weighted quadratic costs corresponding

to state(s) and input(s) (given by
∑∞

k=1{zi(k)
T
Qiz

i(k) +

vi(k)
2
Ri}) is minimized [27]. The state weighting matrix Qi

and input weight Ri are found using trial and error to fine tune

the control performance, and in this paper these are taken as

Qi =diag(50, 100, 10) and Ri = 1, for all 1 ≤ i ≤ m. With

these weights, and with state matrix and input matrix as given

by (27), the LQR feedback law is found to be as follows.

vi = −7.0711zi1 − 13.652zi2 − 6.1077zi3

⇒ ∆ω̈i = −(7.0711∆δi + 13.652∆ωi + 6.1077∆ω̇i)

Also, from (6), ∆ω̈i = − ω0

2Hi Ṫ
i
e − Di

2Hi∆ω̇i

(28)

Differentiating both sides of (19) and using the identities

E
′i
q K

i
d1 + Ψi

1dK
i
d2 = V i

q − IidX
′′i
d and E

′i
d K

i
q1 − Ψi

2qK
i
q2 =

V i
d + IiqX

′′i
q (from (7)), Ṫ i

e is obtained as follows.

Ṫ i
e =T i

e

′ − Ė
′i
q

ω0V
i
dK

i
d1

ωiX
′′i
d

, where,

T i
e

′
=Ė

′i
d

ω0V
i
q K

i
q1

ωiX′′i
q

− Ψ̇i
2q

ω0V
i
q K

i
q2

ωiX′′i
q

− Ψ̇i
1d

ω0V
i
dK

i
d2

ωiX
′′i
d

+V̇ i
q
ω0

ωi [I
i
q +

V i
d

X
′′i
d

] + V̇ i
d
ω0

ωi [I
i
d −

V i
q

X′′i
q

]−∆ω̇i T
i
e

ωi

(29)

Also, Ė
′i
q from (7) can be written as follows.

Ė
′i
q = 1

T
′i
d0

[Ei
fd + Ei

q
′′
], where,

Ei
q

′′
=(Xi

d −X
′i
d )[K

i
d1I

i
d +Ki

d2

Ψi
1d−E

′i
q

X
′i
d
−Xi

l

]− E
′i
q

(30)

Finally, using (6),(28)-(30), the optimal V i
ss comes as follows.

V i
ss =

Ei
fd

Ki
a
− V i

ref + V i
r , Ei

fdmin ≤ Ei
fd ≤ Ei

fdmax

Ei
fd =

T i
e

′

−[7.07∆δi+13.65∆ωi+[6.11− Di

2Hi ]∆ω̇i] 2H
i

ω0

(ω0V i
d
Ki

d1
)/(ωiX

′′i
d

T
′i
d0

)
− Ei

q
′′

where, T i
e

′
, Ei

q

′′
are defined in (29),(30), resp.

(31)

Remark 1. Although the normal form for power system

dynamics, their asymptotic stability and the final control

expression have been derived using a static AVR, these can

be similarly derived considering other types of AVRs as well.

Remark 2. The control input V i
ss in (31) is a small-signal

input given to a machine’s AVR. It should be zero in steady-

state, and should be non-zero only for around 10s−20s after a

disturbance (which is the time-frame of interest for rotor angle

stability). Thus, V i
ss should be passed through a washout filter

to filter-out any DC-component in it and then be given as an

input to the AVR. The largest time constant which describes

the dynamics corresponding to rotor angle stability is given

by T ′
d0, which is around 3−10s for a thermal unit in a power

system [26]. T ′
d0 for the machines considered in Section VII

is around 5 s. Also, the time period of any oscillatory mode

which is of interest (including inter-area modes) is not more

than 5s. Thus, time constant of the washout filter is taken as

5s, so that any slow dynamics which have time constant higher

than 5s (or any DC components) are filtered out.

As the washout filter removes any DC components in the

signal, and as ∆ω̇i = (ω̇i− ω̇i
0), ∆ωi = (ωi−ωi

0) and ∆δi =
(δi − δi0) are DC signals in the post-fault equilibrium, when

the fault is removed and system stabilizes to a new steady

state (and hence to a new topology), these DC components

are also filtered-out by the washout filter. Thus post-fault rotor

angle and rotor velocity can be different from their pre-fault

values, and the post-fault dynamics can easily adjust to any

topological changes in the system. Also, due to filtering-out of

the DC-components by the washout filter, any initial values of

ω̇i
0, ωi

0 and δi0 can be taken, and in this paper these are taken

as 0 p.u., 1 p.u. and 0 rad, respectively.

Remark 3. The stability criteria given in Section IV–Section

V will remain valid even if saturation of the unit is considered.

This is because saturation in synchronous machines is mani-

fested as changes in its parameters (see [23]), that is, changes

in Xi
d, Xi

q , X
′i
d , X

′i
q , and so on. Thus, even if these parameters

get altered because of saturation, the relation given by (25) still

remains valid, and hence the stability criteria given in Section

IV–Section V are valid.

VI. DECENTRALIZED NONLINEAR ESTIMATION

The control expression in (31) is a function of unmeasurable

system states, and hence these states must be estimated in

real-time to implement the control. With the introduction of

PMUs in power systems, it is now possible to acquire in real-

time various phasor quantities, such as bus voltages and line

currents, at very high sampling frequencies (> 100 Hz) [20]-

[22]. These phasor measurements can be utilized for estimation

of the unmeasurable states and this estimation is known as

dynamic state estimation (DSE) [28]–[33]. In [31] a method

was proposed to perform DSE in a decentralized and nonlinear

manner. In this method, the voltage phasor (V i, θi) acquired

at ith machine’s terminal bus is treated as an input in order to

decouple the dynamic equations of a machine from rest of the

power system, followed by application of unscented Kalman

filtering (UKF, [34]) – a nonlinear method of DSE.

UKF is a discrete and iterative method that has four steps.

First, a set of points, called as sigma points, is generated at

each time sample such that the mean and covariance of the

points, respectively, is equal to the estimated mean and co-

variance of the state estimates from the previous time sample.

In the second step, the sigma points are passed through the

dynamic state equations (in this case, the decoupled dynamic

equations of the machine) to get the predicted sigma points

and predicted state estimates. In the third step, the predicted
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sigma points are used to generate predicted measurements, and

finally, the predicted state estimates and the predicted measure-

ments are corrected using the actual measurement(s) (in this

case, the actual measurement is current phasor measured at

machine terminal) and the states estimates are thus generated.

Using the above method, the estimates of ∆δi, ∆ωi, E
′i
q ,

E
′i
d , Ψi

2q , Ψi
1d, V i

r are found for the ith machine using just the

voltage and current phasors measured at that machine. These

estimates are then used in (31) to find the input V i
ss for the

machine’s AVR at each time sample. The estimate of derivative

of a term used in (31) is found by subtracting the estimate of

the term in the previous sample from its estimate in the current

sample, and dividing the difference by the sampling period.

For example, estimate of V̇ i
q (k) is

V i
q (k)−V i

q (k−1)

T0

, where k
denotes the kth time sample, T0 is the sampling period, and

V i
q (k) = V i(k) cos (δi0 +∆δi(k)− θi(k)) (from (6)).

Remark 4. As V i
d and V i

q are algebraic quantities, their time-

derivatives can have very large magnitudes during switching

events or any other disturbances, and hence these large mag-

nitude derivatives should be detected and filtered-out as they

can jeopardize the stability of the system. In this paper, this is

done by comparing the derivative at the kth time sample with

the derivative at (k − 1)th time sample, and if the difference

between the two is more than a predetermined value, then

the derivative at the kth time sample is set to zero. In this

paper, this predetermined value is taken as 0.04, as this value

successfully removes all such large magnitude derivatives, and

at the same time retains other derivatives. This value was found

using trial and error.

VII. CASE STUDY

A model 16-machine, 68-bus test system (Fig. 1) has been

used for the case study and MATLAB-Simulink has been used

for its modelling and simulation. A detailed description of the

system is available in [4] or [35]. The following two cases have

been considered to assess the performance of the proposed

control method for both small signal stability and transient

stability.
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Fig. 1. Line diagram of the 16-machine, 68-bus, power system model

Case A: Assessment of small signal stability

In this case, the test system starts from steady state, and at

t = 1s a small-disturbance takes place in which one of the tie-

lines of the double circuit line between buses 54–53 goes out

of service. The test system has four inter-area modes in the

range 0.1-1.0 Hz and three of these modes are very poorly

damped with damping ratios less than 3% (Table I). Thus,

after the small-disturbance, poorly damped oscillations ensue

in the open-loop system, which need to be controlled using an

adequate method of control. Three different control methods

have been considered to control the oscillations: (1) using PSS

control, (2) using decentralized linear control, and (3) using

the proposed non-linear control. The employed decentralized

linear control is based on an extended linear quadratic regula-

tor (ELQR), and has been described in [36]-[37]. A description

of the PSS control method and its parameters is also available

in [37].

The plots of the power flow in the inter-area line between

buses 60–61 for the three control types are shown in Fig. 2 and

the plots for δ, ω, V and Efd of units 1 and 8 are shown in

Fig. 3–Fig. 4. Units 1 and 8 have been chosen for showing the

plots because the disturbance takes close to these units. Also,

the plots for a unit which is not close to the disturbance (unit

13) are shown in Fig. 5. It can be observed in Fig. 2–Fig. 5

that the damping provided to the oscillations by the proposed

control is better than the other two controls. Also, the voltage

regulation provided by the proposed control is on a par with

the other two methods.
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Fig. 2. Small signal stability comparison: Power flow in inter-area line

Modal and sensitivity analysis: Table I presents the modal

analysis of interarea modes, wherein the frequencies and

damping ratios of the three poorly damped inter-area modes

have been shown. It can be seen in Table I that the damping

ratios for the proposed control are much higher as compared

to the other two control methods, while the corresponding

frequencies for the proposed control are much lower. To

understand the reason behind this, further analysis of the

sensitivity of the interarea modes to system states needs to

be done.

The sensitivity of a system’s ath mode (or eigenvalue) to the

system’s bth state is given by the participation factor Pba, and

is equal to the product of the bth entry of the ath right eigen-

vector and the bth entry of the ath left eigenvector [26]. As
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TABLE I
MODAL ANALYSIS OF INTERAREA MODES

Open- PSS ELQR Nonlinear
loop control control control

Mode-1 frequency (Hz) 0.39 0.43 0.31 0.12

Mode-1 damping ratio (%) 0.9 11.4 18.7 47.2

Mode-2 frequency (Hz) 0.52 0.54 0.47 0.20

Mode-2 damping ratio (%) 2.1 6.3 9.8 92.8

Mode-3 frequency (Hz) 0.60 0.63 0.54 0.21

Mode-3 damping ratio (%) 1.2 5.7 11.0 91.0

the interarea modes are the most significant electromechanical

modes of the test system, it is logical to see how sensitive these

modes are to the various electromechanical states of the system

(electromechanical states are the δ and ω of various generating

units in the system). Table II shows the top three normalized

participation factors (NPF) of the electromechanical states in

each of the interarea modes for the four control scenarios.

It can be seen that the participation in the three interarea

modes from various electromechanical states is among the

highest for three scenarios: open-loop, PSS control and ELQR

control. But this participation is significantly reduced for the

proposed nonlinear control. Instead, the highest participating

states in the case of nonlinear control are various controller

states, as can be seen in Table III (the hat, ˆ , denotes

that the quantities are estimated controller states). This high

participation of controller states in the interarea modes is the

reason behind relatively low frequencies, and relatively higher
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TABLE II
SENSITIVITY ANALYSIS: NORMALIZED PARTICIPATION FACTORS (NPF)

OF ELECTROMECHANICAL STATES IN THE THREE INTERAREA MODES

Mode-1 Mode-2 Mode-3

State NPF State NPF State NPF

δ15 1.00 ω16
1.00 ω13

1.00

Open-loop ω15
0.99 δ16 0.99 δ13 0.99

δ14 0.84 δ14 0.81 ω16
0.20

ω13
1.00 ω16

1.00 ω13
1.00

PSS control ω15
0.89 δ16 0.93 δ13 0.92

δ15 0.83 ω14
0.73 ω16

0.13

δ1 1.00 δ16 1.00 ω13
1.00

ELQR control ω15
0.96 ω16

0.97 δ13 0.98

δ15 0.94 ω14
0.94 δ16 0.32

δ14 0.30 ω15
0.25 ω13

0.39

Nonlinear control δ15 0.27 ω14
0.10 ω12

0.10

δ16 0.26 ω16
0.07 ω1

0.10

damping ratios for the interarea modes.

The overall system damping is decided not only by the

frequencies of the dominant modes, but also by the damping

ratios of those modes [26]. Thus, the reduction in frequencies

of the interarea modes in the case of nonlinear control has no

adverse effect on control performance because this reduction is

well compensated by a significant increase in damping ratios,

and the overall damping provided by the proposed control is

better than the other two control methods.

TABLE III
TOP THREE NORMALIZED PARTICIPATION FACTORS (NPF) OF SYSTEM

STATES IN THE INTERAREA MODES FOR THE PROPOSED CONTROL

Mode-1 Mode-2 Mode-3

State NPF State NPF State NPF
ˆ̇
V 16
q 1.00

ˆ̇
V 15
q 1.00

ˆ̇
V 13
q 1.00

Nonlinear control
ˆ̇
V 16
d

0.75 Ψ̂
15
1d 0.61 ω̂13

0.80

Ψ̂
16
1d 0.63 Ê

′15
q 0.52 Ψ̂

13
1d 0.76

Remark 5. Performance of other methods of nonlinear con-

trol: Other methods of nonlinear control have also been tested

for controlling the oscillations caused by the aforementioned

small disturbance in the test system. These methods include

control using two methods based on normal forms given in

[7] and [8], and control using two Lyapunov based methods

given in [13] and [16]. It was found that the methods either

destabilize the system or produce unwanted oscillations (power

flow in line 60–61 for the methods based on normal forms are

shown in Fig. 6). This is because all these tested methods have

been derived using classical model of machines and employ

gross approximations, and hence have adverse effects on the

stability of the test system which is modelled using a detailed

subtransient model (IEEE Model 2.2) for machines.

Case B: Assessment of transient stability

In the second case, the system starts from steady state, and

at t = 1s a three phase fault is simulated at bus 54, followed by

clearing the fault after 200 ms by opening of circuit breakers

on the line 54–53. Figure 7 shows the response of the three

control methods to this large disturbance. Other nonlinear

methods of control have not been used for comparison as
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Fig. 7. Transient stability comparison: Power flow in inter-area line

they failed to perform properly even for a small disturbance

(Remark 5). It can be clearly observed that the proposed

method can provide adequate damping to the oscillations

occurring after the disturbance, and hence can ensure the

transient stability of the system after a large-disturbance. On

the other hand, the system destabilizes after the disturbance

under either PSS control or ELQR control. As both PSS and

ELQR fail to stabilize the system, in Fig. 8–Fig. 10 only the

performance under the proposed nonlinear has been shown.

Discussion on magnitude of control input and the control per-

formance: The final control input which is given to a generator

is the excitation voltage, Efd, from the corresponding AVR.

It can be observed in Fig. 4–Fig. 5 and Fig. 9–Fig. 10 that

the control input is larger for nonlinear control as compared

to PSS or ELQR. A relatively larger control input in case

of nonlinear control is needed in order to ensure that the

control can maintain the stability of the system in face of both

large and small disturbances. This observation of nonlinear

control requiring relatively larger control input has been made

in power system literature, such as [7], [8]. It can also be

observed that nonlinear control provides a large control input

to the generators only for the first four-five seconds after

the disturbance, and within around 15 seconds the control

inputs, the states and other algebraic variables of generators

settle down to their steady-state values. Also, the control input

is larger for generators which are electrically close to the

disturbance (generators 1 to 8), as opposed to the generators

which are not close (such as generator 13).

PSS and ELQR take longer time to settle down in case of a

small disturbance (Case A), and fail to maintain the stability

of the system in case of a large disturbance (Case B). This

is because the control input from PSS and ELQR is not large

enough after the disturbance, and the magnitude of the control
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Fig. 10. Performance of unit 13 under nonlinear control for Case B

input is more-or-less uniform for all the generators (instead of

being larger for generators electrically closer to the disturbance

and smaller for machines which are electrically farther), as can

be observed in Fig. 4–Fig. 5 and Fig. 9–Fig. 10. If larger gains

are used for PSS and ELQR then they would also provide large

control inputs. But as PSS and ELQR are derived using linear

model of power systems and are designed specifically for

small disturbances, they may not work for large disturbances

since a linear model is not valid for large disturbances. Thus,

using large gains for PSS and ELQR (or other tools for small

signal stability) may worsen the situation in case of a large

disturbance, or jeopardize the stability of the system even in

case of a small disturbance. As the proposed nonlinear control

is derived specifically for nonlinear model of power systems,

it is not dependent on a particular equilibrium point or a linear

model evaluated at that point. Hence, it ensures that both the

small signal stability and the transient stability of the system

are maintained irrespective of whether the disturbance is small

or large.

Computational feasibility

The complete simulation of the power system, along with

the dynamic estimators and the nonlinear controllers at each

of the 16 machines, runs in real-time. In the case study, a

30s simulation takes an average running time of 10.1s on a

personal computer with Intel Core 2 Duo, 2.0 GHz CPU and

2 GB RAM. Hence the computational requirements at one

machine can be easily met for both estimation and control.
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VIII. CONCLUSION

A nonlinear control scheme has been proposed for decen-

tralized control of power system dynamics. A normal form

has been developed for modelling the subtransient dynamics

of power systems, and the proposed control scheme has been

subsequently derived using this normal form. Asymptotic

stability of the whole system under the proposed control has

been proved. It has been demonstrated using simulations that

the method can be used to ensure both transient stability and

small signal stability. Thus, it is a robust tool for mitigation

of blackouts which are caused by poorly damped oscillations

and other transient instabilities occurring in power systems.
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