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Abstract—This paper proposes a decentralized method for
estimation of dynamic states of a power system. The method
remains robust to time-synchronization errors and high noise-
levels in measurements. Robustness of the method has been
achieved by incorporating internal angle in the dynamic model
used for estimation and by decoupling the estimation process
into two stages with continuous updation of measurement-noise
variances. Additionally, the proposed estimation method does not
need measurements obtained from phasor measurement units
(PMUs); instead, it just requires analogue measurements of
voltages and currents directly acquired from instrument trans-
formers. This is achieved through statistical signal processing
of analogue voltages and currents to obtain their magnitudes
and frequencies, followed by application of unscented Kalman
filtering for nonlinear estimation. The robustness and feasibility
of the method have been demonstrated on a benchmark power
system model.

Index Terms—decentralized, time-synchronization error, inter-
nal angle, statistical signal processing, dynamic state estimation
(DSE), pseudo-input, unscented Kalman filtering (UKF), discrete-
time Fourier transform (DFT), Hanning-window, instrument
transformers, phasor measurement unit (PMU).

NOMENCLATURE

α difference of rotor angle and stator voltage phase in rad
0 denotes a zero matrix (or vector) of appropriate size
χ denotes a state sigma point
γ denotes a measurement sigma point
g, ḡ discrete and continuous forms of differential functions, resp.
h a column vector of the system algebraic functions
I denotes an identity matrix of appropriate size
K the Kalman gain matrix
P denotes a covariance matrix or a cross-covariance matrix
u′,v column vectors of pseudo-inputs and process noise, resp.
w, w′ column vectors of noise in y and u′, resp.
x, y column vectors of states and measurements, resp.
X composite state vector
δ rotor angle in rad

�̂, �− denote estimated and predicted values, resp.
λ denotes the λth component of a DFT
ω, ω0 rotor-speed and its synchronous value in rad/s, resp.
Ψ1d subtransient emfs due to d axis damper coil in p.u.
Ψ2q subtransient emfs due to q axis damper coil in p.u.
σ denotes standard deviation, with σ2 as variance
θ phase of Y ’s fundamental component in rad
θV , θI phases of stator voltage and current, resp., in rad
D rotor damping constant in p.u.
E′

d transient emf due to flux in q-axis damper coil in p.u.
E′

q transient emf due to field flux linkages in p.u.
Efd field excitation voltage in p.u.
f frequency of Y ’s fundamental component in Hz
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fs sampling frequency for interpolated-DFT method in Hz
fV , f0 frequency of V in p.u. and its base value in Hz, resp.
H generator inertia constant in s
h Hann window function
I , Im analogue stator current and its magnitude, resp., in p.u.
i, j denote the ith generation unit and

√

–1, resp.
Id, Iq d-axis and q-axis stator currents, resp., in p.u.
k, k̄, l kth and (k − 1)th samples and the lth sigma-point, resp.
Ka AVR gain in p.u.
Kd1 the ratio (X ′′

d −Xl)/(X
′

d −Xl)
Kd2 the ratio (X ′

d −X ′′

d )/(X
′

d −Xl)
Kq1 the ratio (X ′′

q −Xl)/(X
′

q −Xl)
Kq2 the ratio (X ′

q −X ′′

q )/(X
′

q −Xl)
m, n number of states in x and X , resp. (n = m+ 2)
N , M total samples for finding DFT & total generation units, resp.
Pe active electrical-power output of a machine in p.u.
Rs armature resistance in p.u.
t system time in s
T , T0 denote transpose and UKF’s sampling period (in s), resp.
Te,Tm0 electrical and mechanical torques, resp., in p.u.
Tr time constant for the AVR filter in s
T ′

d0,T ′

q0 d-axis and q-axis transient time constants, resp., in s
T ′′

d0,T ′′

q0 d-axis and q-axis subtransient time constants, resp., in s
V , Vm analogue stator voltage and its magnitude, resp., in p.u.
Vd,Vq d-axis and q-axis stator voltages, resp., in p.u.
Vr ,Vref AVR-filter voltage and AVR-reference voltage, resp., in p.u.
W DFT of Hann window function
Xd,Xq d-axis and q-axis synchronous reactances, resp., in p.u.
X ′

d,X ′

q d-axis and q-axis transient reactances, resp., in p.u.
X ′′

d ,X ′′

q d-axis and q-axis subtransient reactances, resp., in p.u.
Xl armature leakage reactance in p.u.
Y denotes a sinusoidal signal with harmonics and noise
Ym magnitude of Y ’s fundamental component in p.u.
Z DFT of the product of Y and h

I. INTRODUCTION

A
disturbance in a power system (such as a fault) can initi-

ate spontaneous oscillations in the power-flows in trans-

mission lines. These oscillations grow in magnitude within few

seconds if they are undamped or poorly damped. This can lead

to loss in synchronism of generators or voltage collapse, ulti-

mately resulting in wide-scale blackouts. The power blackout

of August 10, 1996 in the Western Electricity Co-ordination

Council region is a famous example of blackouts caused by

such oscillations [1], [2]. In order to monitor and control

such oscillations and related dynamics which cause instability,

the operating state of the system needs to be estimated in

real-time, with update rates which are in time scales of ten

milliseconds or less (as the time constants associated with

such oscillations are not more than ten milliseconds), and this

real-time estimation of operating state is known as dynamic

state estimation (DSE) [3]-[12]. DSE is a fast growing and

widely researched field, and it lays the foundation for a new
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generation of control methods which can prevent blackouts by

dynamically stabilizing the system.

The dynamic states which are estimated and obtained as

outputs from DSE algorithms are angles, speeds, voltages and

fluxes of the rotors of all the generators in the power system.

The inputs which are given to DSE algorithms are some mea-

surable time-varying quantities such as voltage and current of

the stator, and some measurable time-invariant quantities such

as resistances, reactances, inertia and other constants for the

generator. The constant quantities are measured beforehand,

and are used as parameters in DSE algorithms.

A generator’s voltage, current and power are sinusoidal

quantities, and since each sinusoid has a magnitude and a

phase (which are together known as a phasor), these quan-

tities can either be represented as sine waves, or as phasors.

The conversion of sine waves to phasors is done by phasor

measurement units (PMUs). During this conversion, PMUs

provide a common reference angle to the phase of the phasor.

This is required because a power system is a rotational system

(because of the rotational parts of the generators), and every

rotational system needs to have a reference angle which is

common for all the angles in the system. This common refer-

ence angle is provided by PMUs using a common time source

for synchronization which is obtained using time clock of

global positioning system (GPS) [13]. One important dynamic

state which also requires this common reference angle is the

rotor angle of a machine. Thus, in order to estimate the rotor

angle any DSE algorithm available in power system literature

requires synchronized measurements obtained using PMUs

[3]-[12].

One problem with time synchronization is that it has asso-

ciated noise and synchronization-errors [13]. Synchronization-

errors increase the total vector error (TVE) of PMU measure-

ments. For instance, in [14] it was demonstrated that a time

synchronization error of just 10µs can make the TVE greater

than 1% for PMUs, even though this synchronization error is

much less than the maximum allowable error of 31.6µs as per

IEEE standard [15]-[16]. As synchronized measurements are

used for DSE, these errors can get propagated to the estimated

states and deteriorate the overall accuracy and robustness of

estimation. It is also not possible to completely eliminate time

synchronization as it is inherently required for estimation of

rotor angles. This leads to the main idea of the paper: although

time synchronization is needed for estimation of rotor angle, it

is not needed for estimation of other dynamic states, such as

rotor speed, rotor voltages and fluxes, as these states are not

defined with respect to a common reference angle. Thus, if the

dynamic model which is used for estimation can be modified

in such a way that rotor angle is replaced with another

angle which does not require time-synchronization, then this

can minimize the effects of synchronization on accuracy and

robustness of estimation.

The proposed method provides an algorithm for DSE which

realizes the above idea. This is done by modifying the es-

timation model to estimate a relative angle (which does not

require synchronization) instead of rotor angle. One such angle

is the difference between the rotor angle and the generator

terminal voltage phase, also known as the internal angle of

the generator. As the rotor angle and the voltage phase have a

common reference angle, this reference angle gets cancelled in

the difference of the two quantities. Thus, the internal angle,

rotor speed, voltages and fluxes can be estimated using the

modified estimation model without requiring any synchronized

measurements. These dynamic states can then be utilized for

decentralized control of the generator [17], [18], [19], [20],

[21]. It should be noted that if the estimation of rotor angle is

specifically required then it can be indirectly estimated as the

sum of the estimated internal angle and the measured terminal

voltage phase obtained using PMU.

To further elaborate, the novel contributions and advantages

of the proposed method are enumerated as follows.

• All the dynamic states are estimated without any time-

synchronization by incorporating internal angle in estima-

tion model, which in turn ensures robustness of the method

to synchronization errors.

• The error in phasor measurements considered in several

existing methods of DSE is much less than 1% TVE (see, for

example, [3], [4], [9] and [11]). 1% TVE is the permissible

error in PMU measurements as per IEEE standard [15]-[16],

and, hence, these methods of DSE do not consider realistic

errors in measurements. The proposed method considers and

remains accurate for varying levels of errors in measure-

ments – from 0.1% to 10%. Also none of the currently

available methods take into account GPS synchronization

errors.

• As synchronization is not required for estimation of the

states, DSE for these states can be performed using the

analogue measurements directly acquired from current trans-

formers (CTs) and voltage transformers (VTs). This is

particularly beneficial for decentralized control purposes,

such as in [17]–[21].

• A dual-stage estimation process has been proposed in which

interpolated discrete-time Fourier transform (DFT) [22] and

unscented Kalman filtering (UKF) [23] have been combined

as two stages of estimation. The DFT stage dynamically

provides estimates of means and variances of the inputs

required by the UKF stage, and this continuous updation of

variances is one of the reasons for noise-robustness of the

proposed method. In existing methods of DSE for power

systems, only static estimates of measurement variances are

provided to the estimator.

• Analytical expressions have been obtained for the means and

variances of the parameter estimates of a sinusoidal signal

(which are given as input to the UKF stage from the DFT

stage). Most of these expressions are currently not available

in literature.

Rest of the paper is organized as follows. Section II specifies

the decoupled equations which are used in the proposed

method. Section III describes the process for estimation of

magnitude, phase and frequency of the analogue signals of

terminal voltage and current, while Section IV explains how

these estimates can be further used for DSE using unscented

Kalman filtering. Section V presents simulations to demon-

strate the developed estimation method. Section VI concludes

the paper.
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II. POWER SYSTEM DYNAMICS IN A DECOUPLED FORM

A power system consists of a wide variety of elements,

including generators, their controllers, transmission lines,

transformers, relays and loads. All these elements are elec-

trically coupled to each other, and, therefore, in order to

define a power system using dynamic mathematical equations,

complete knowledge of the models, states and parameters

of all these constituent elements is required. Acquiring this

knowledge in real-time is not feasible as power systems span

wide geographic regions, which are as large as a country,

or even a continent. Therefore, it is a practical necessity

to represent the dynamic equations of power system in a

decoupled form, so that the real-time estimation of dynamic

states can be conducted in a decentralized manner. Such a

decoupling of system equations can be achieved if a generator

and its controller(s) is considered as a decentralized unit, and

the stator terminal voltage magnitude, Vm, and its phase, θV ,

are treated as ‘inputs’ in the dynamic equations, instead of

considering them as algebraic quantities or measurements.

This concept of ‘pseudo-inputs’ for decoupling the equations

was introduced in [9], and has been used in the proposed

method as well.

In order to estimate the internal angle (which is the differ-

ence between the rotor angle and the voltage phase) instead

of estimating the rotor angle (as explained in Section I), the

decoupled equations and the pseudo-inputs for a generator also

get altered. The altered decoupled equations are given by (1)-

(11), derived using the subtransient model of machines with

four rotor coils in each machine, known as IEEE Model 2.2

[24]. In these equations, the altered pseudo-inputs are Vm and

voltage frequency, fV , and i refers to the system’s ith machine,

1 ≤ i ≤M . Slow dynamics of the speed-governor have been

ignored in this model (although they can also be added, if

required). Also, model of a static automatic voltage regulator

(AVR) is included with the model of each machine.

∆α̇i = (ωi − f i
V ) (1)

∆ω̇i = ω0

2Hi (T
i
m0 − T i

e)−
Di

2Hi∆ωi (2)

Ė
′i
d = 1

T
′i
q0

[−E
′i
d − (Xi

q −X
′i
q )[K

i
q1I

i
q +Ki

q2
Ψi

2q+E
′i
d

X
′i
q −Xi

l

]] (3)

Ė
′i
q =

Ei
fd−E

′i
q +(Xi

d−X
′i
d )[Ki

d1I
i
d+Ki

d2

Ψ
i
1d

−E
′i
q

X
′i
d

−Xi
l

]

T
′i
d0

(4)

Ψ̇i
1d = 1

T
′′i
d0

[E
′i
q + (X

′i
d −Xi

l )I
i
d −Ψi

1d] (5)

Ψ̇i
2q = 1

T
′′i
q0

[−E
′i
d + (X

′i
q −Xi

l )I
i
q −Ψi

2q] (6)

V̇ i
r = 1

T i
r
[V i

m − V i
r ], where, (7)

Ei
fd = Ki

a[V
i
ref − V i

r ], E
i
fdmin ≤ Ei

fd ≤ Ei
fdmax (8)

[

Iid
Iiq

]

=

[

Ri
s X

′′i
q

−X
′′i
d Ri

s

]–1 [
E

′i
d K

i
q1 −Ψi

2qK
i
q2 − V i

d

E
′i
q K

i
d1 +Ψi

1dK
i
d2 − V i

q

]

(9)

T i
e = ω0

ωi P
i
e , P

i
e = V i

d I
i
d+V i

q I
i
q = V i

mIim cos (θiV − θiI) (10)

Iim =

√

Iid
2
+ Iiq

2
, V i

d = −V i
m sinαi, V i

q = V i
m cosαi (11)

The above equations can be written in the following com-

posite state-space form which will be used for DSE (here

pseudo-inputs are denoted by u′i, and the process noise and

the noise in pseudo inputs have been included, and denoted

by vi and w′i, respectively).

ẋi = g′i(xi,u′i,w′i) + vi;u′i–w′i = [V i
m f i

V ]
T

xi = [αi ωi E
′i
d E

′i
q Ψi

1d Ψi
2q V i

r ]
T (12)

III. INTERPOLATED DFT BASED ESTIMATION

Several methods have been proposed in literature for es-

timating the parameters of a sinusoidal signal, but most

of these methods are computationally expensive and, hence,

are not suitable for real-time applications [25]. Recently, an

interpolated DFT based estimation method was proposed in

[22] and was shown to be both fast and accurate enough for

real-time control applications in power systems. This method

has been further developed in this section for finding the esti-

mates of frequency, magnitude and phase of the fundamental

components of measurements obtained from CTs and PTs.

The fundamental component of a sinusoidal signal can be

extracted by multiplying the signal with a suitable window

function which eliminates other harmonics and higher fre-

quency components in the signal, followed by finding its

DFT. One such function is Hanning window function given

by hk = sin2 (πk
N
), and if this function is multiplied with N

samples of an analogue signal Y (t) sampled at a frequency

fs, then DFT of the product is given by Z(λ) as follows [22].

Z(λ) =
N−1
∑

k=0

Ykhke
−

j2πkλ
N

=
Ym

2j
ejθW (λ−

fN

fs
)−

Ym

2j
e−jθW (λ+

fN

fs
)

(13)

where, Ym, θ and f are magnitude, phase and frequency of Y ’s

fundamental component, respectively; λ ∈ {0, 1, ..., N − 1};
and W (λ) is the following DFT of Hanning window function.

W (λ) =

N−1
∑

k=0

hke
−

j2πkλ
N =

N−1
∑

k=0

sin2 (
πk

N
)e−

j2πkλ
N (14)

The key concept in interpolated-DFT based estimation is

to approximate W (λ) with the following expression, provided

that N >> 1 and λ << N [22], [26].

W (λ) ≈
N

4πj

(1− e−j2πλ)

(λ− λ3)
(15)

By substituting (15) in (13), Z(λ) can be expressed as

follows for N >> 1 and λ << N .

Zλ = Z(λ) =
ŶmN

8π
[
ejθ̂(e−j2π(λ− f̂N

fs
) − 1)

(λ− f̂N
fs

)− (λ− f̂N
fs

)3

−
e−jθ̂(e−j2π(λ+ f̂N

fs
) − 1)

(λ+ f̂N
fs

)− (λ+ f̂N
fs

)3
]

(16)

where Ŷm, θ̂ and f̂ denote the estimates of Ym, θ and f ,

respectively. As (16) has three unknowns (which are Ŷm, θ̂
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and f̂ ), three distinct equations are required to estimate these

unknowns. This can be done by choosing any three distinct

values of λ in (16) (say λ = 1, λ = 2 and λ = 3). The obtained

values of Ŷm, θ̂ and f̂ will have associated estimation errors

which will depend on N and on the values of λ which are used

for generating the three distinct equations. More precisely,

these estimation errors are inversely proportional to N4 [22],

and, hence, N should be as large as practically feasible. In

this paper N is taken to be in the order of 103, as this is

the highest order for N for which interpolated-DFT can run

on a state-of-the-art DSP processor without overloading it [22]

(The DSP processor used in [22] is a TMS320C6713 with 225

MHz clock rate and 264 KB onchip-RAM. Overloading refers

to overall processor usage of above 95%.). Also, for a given

N , the estimation errors are minimized if the choices for λ are

taken as λ = 0, λ = 1 and λ = 2, provided that f̂N
fs

< 2.1;

otherwise, for 2.1 < f̂N
fs

< 3, the errors are minimized if the

choices are λ = 1, λ = 2 and λ = 3 [22]. The value of f̂N
fs

should not be greater than 3 as then the delay in obtaining the

estimated values becomes too large (that is, more than two

cycles, or more than 0.04 s for a 50Hz power system), and at

the same time it should not be too small as then the accuracy

of estimation is diminished [22]. In this paper an intermediate

value of f̂N
fs
≈ 1.5 has been taken and, hence, the former

choices of λ = 0, λ = 1 and λ = 2 are applicable.

Remark 1. f̂N
fs

is an unknown quantity as f needs to be esti-

mated. But because of power system operational requirements

[27], f should remain within 5% of the base system frequency,

f0 (which is usually 50 Hz or 60 Hz), and, hence, if N and

fs are chosen such that f0N
fs

= 1.5, then f̂N
fs
≈ 1.5.

The 3 equations which are obtained by putting λ = 0, λ = 1
and λ = 2 in (16) can be written in matrix form as follows.













f̂N
fs

−2

f̂N
fs

+1

f̂N
fs

+2

f̂N
fs

−1
Z0

1 1 Z1
f̂N
fs

f̂N
fs

−3

f̂N
fs

f̂N
fs

+3
Z2

























ŶmNejθ̂(e
j2πf̂N

fs −1)

8π f̂N
fs

( f̂N
fs

−1)( f̂N
fs

−2)

ŶmNe–jθ̂(e
–
j2πf̂N

fs −1)

8π f̂N
fs

( f̂N
fs

+1)( f̂N
fs

+2)

−1













=





0
0
0



 (17)

Equation (17) implies that the product of a square-matrix

and a column vector is equal to a zero vector, when both the

matrix and the vector have non-zero elements. This can only

happen if the columns of the matrix are linearly dependent,

that is, the determinant of the matrix is zero, given as follows.

∣

∣

∣

∣

∣

∣

∣

∣

f̂N−2fs
f̂N+fs

f̂N+2fs
f̂N−fs

Z0

1 1 Z1

f̂N

f̂N−3fs

f̂N

f̂N+3fs
Z2

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (18)

Simplification of the above determinant gives f̂ as follows.

f̂ =
fs
N

√

Z0 + 2Z1 + 9Z2

Z0 − 2Z1 + Z2
(19)

θ̂ can be obtained by substituting the above value of f̂ back

into (16) and eliminating Ŷm. To do this, the equation which

is obtained by putting λ = 0 in (16) is divided by the equation

obtained by putting λ = 1 in (16), which comes as follows.

Z0

Z1
=

ejθ̂B + e−jθ̂C

ejθ̂E + e−jθ̂F
;B =

1− e
j2πf̂N

fs

f̂N
fs
− [ f̂N

fs
]3
, C =

1− e−
j2πf̂N

fs

f̂N
fs
− [ f̂N

fs
]3
,

E =
1− e

j2πf̂N
fs

f̂N
fs
− 1− [ f̂N

fs
− 1]3

, F =
1− e−

j2πf̂N
fs

f̂N
fs

+ 1− [ f̂N
fs

+ 1]3
(20)

Solving for ejθ̂ using (20) gives the following expression.

ejθ̂ =

√

Z0F − Z1C

Z1B − Z0E
⇒ θ̂ =

1

2j
ln

{

Z0F − Z1C

Z1B − Z0E

}

(21)

Using (21) and (16) (with λ = 0), Ŷm comes as follows.

Ŷm = 8πZ0/
[

N
{

Bejθ̂ + Ce−jθ̂
}]

(22)

where B, C, and ejθ̂ are given by (20)-(21).

Remark 2. It should be noted that f̂ , θ̂ and Ŷm are real quan-

tities, but they are obtained as functions of complex quantities

(given in the right hand sides (RHSs) of (19), (21) and (22),

respectively). Hence, these quantities will have negligible but

finite imaginary parts associated with them because of finite

computational accuracy of any computational device. Thus,

during implementation, the imaginary parts should be ignored

and only the real parts of RHSs should be assigned to f̂ , θ̂ or

Ŷm. Also, as f̂ and Ŷm are strictly positive, absolute values

of real parts of respective RHSs should be assigned to them.

It was found in [22] that the variance of the above estimate

of f̂ in (19) is approximately twice the minimum possible

variance which is theoretically achievable using any unbiased

estimator (known as Cramer-Rao bound (CRB) [28]). CRB for

frequency estimation of a sinusoidal signal has been derived

in [28] and is given by CRB(f̂) (in Hz2) as follows.

CRB(f̂) =

(

fs
2π

)2
24σ2

Y

Ŷ 2
mN(N2 − 1)

(23)

where σ2
Y is the variance of noise in Y (in p.u.). CRBs for

Ŷm and θ̂ have been derived in Appendix A, and are given

by CRB(Ŷm) (in p.u.) and CRB(θ̂) (in rad2), respectively, as

follows.

CRB(Ŷm) =
2σ2

Y

N
; CRB(θ̂) =

4σ2
Y (2N + 1)

Ŷ 2
mN(N − 1)

(24)

Following the statistical analysis given in [22] for finding the

variance of f̂ , the variances of Ŷm and θ̂ are found to be

approximately two and six times the above CRBs in (24),

respectively; and hence, the estimated variances of f̂ , θ̂ and

Ŷm are given by σ̂2
f (in p.u.), σ̂2

Ym
(in p.u.) and σ̂2

θ (in rad2),

respectively, as follows.

σ̂2
f =

2CRB(f̂)

f2
0

; σ̂2
Ym

= 2CRB(Ŷm); σ̂2
θ = 6CRB(θ̂) (25)

where CRB(f̂), CRB(Ŷm) and CRB(θ̂) are given by (23)-(24).

Estimates of means and variances obtained above are given as

inputs to the UKF stage, as detailed in the next section.
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Remark 3. The advantage of obtaining the analytical expres-

sions for σ̂2
f , σ̂2

Ym
and σ̂2

θ in (23)-(25) is that these variances

can be continuously updated and provided to the dynamic

estimator (which is the UKF stage) along with f̂ , θ̂ and Ŷm,

thereby improving the accuracy of dynamic state estimation.

IV. UNSCENTED KALMAN FILTERING

UKF is a nonlinear method for obtaining dynamic state

estimates of a system. It employs the basic idea that per-

forming DSE is easier if the distribution of state estimates

is transformed, than if the system model itself is transformed

through linearization. System linearization requires computa-

tion of Jacobian matrices and is a mathematically challenging

task for a high order power system model, especially if it

needs to be done at every iteration. Since linearization is not

required in UKF, and, moreover, it has higher accuracy and

similar computational speeds as that of linear methods of DSE

[8], UKF has been used for performing DSE in this paper.

UKF is a discrete method and, hence, the system given by

(12) needs to be discretized before UKF can be applied to it.

Discretizing (12) at a sampling period T0, by approximating

ẋi with (xik−xik̄)/T0, gives the following equation (where k
and k̄ represent the kth and (k − 1)

th
samples, respectively).

xik = xik̄ + T0g
′i(xik̄,u′ik̄,w′ik̄) + vik̄

⇒ xik = gi(xik̄,u′ik̄,w′ik̄) + vik̄
(26)

In the above model, V̂ ik
m and f̂ ik

V (found using the DFT

method) are used in the pseudo-input vector u′ik as follows.

u′ik = [V̂ ik
m f̂ ik

V ]T = [V ik
m f ik

V ]T +w′ik (27)

UKF also requires a measurement model besides the above

process model. The estimates of active power, P ik
e (defined

by (10)), and stator current magnitude, Iikm (defined by (11)),

which are obtained using the DFT method are used as

measurements for UKF. After incorporating the measurement

noise, wik, the measurement model is given as follows.

yik =

[

P̂ ik
e

Îikm

]

=

[

V ik
d Iikd + V ik

q Iikq
√

Iikd
2
+ Iikq

2

]

+wik

⇒yik = hi(xik,u′ik,w′ik) +wik

(28)

u′ik and yik are estimated quantities and have finite

variances which need to be included in the process and

measurement models, respectively. This is done by including

w′ik and wik in the models as the following zero-mean noises.

w′ik=

[

w′

V ik
m

w′

fik
V

]

; ŵ′ik=

[

0
0

]

; P ik
w′=

[

σ̂2
V ik
m

0

0 σ̂2
fik
V

]

(29)

wik=

[

wP ik
e

wIik
m

]

; ŵik=

[

0
0

]

; P ik
w=

[

σ̂2
P ik

e
0

0 σ̂2
Iik
m

]

(30)

where P ik
w′ and P ik

w denote the covariance matrices of w′ik

and wik, respectively. In order to find the estimates and vari-

ances in (27)-(30), the stator voltage, V i(t), and stator current,

Ii(t), measured using VT and CT, respectively, are processed

using the DFT method. Thus, V̂ ik
m , f̂ ik

V , θ̂ikV , σ̂2
V ik
m

, σ̂2
fik
V

and

σ̂2
θik
V

are obtained by putting Y (t) = V i(t) in (13)-(22) and

updating these estimates and variances for every kth sample.

Similarly, Îikm , f̂ ik
I , θ̂ikI , σ̂2

Iik
m

, σ̂2
fik
I

and σ̂2
θik
I

are obtained by

putting Y (t) = Ii(t). As P ik
e = V ik

m Iikm cos (θikV − θikI ) (from

(10)) and the mean values and variances of V ik
m , Iikm , θikV and

θikI are known, the mean value of P ik
e (denoted as P̂ ik

e ) and

its estimated variance (denoted as σ̂2
P ik

e
) can be represented in

terms of these known quantities, and have been obtained as

follows (here it should be noted that by definition θikV and

θikI lie in the interval (−π/2, π/2], hence, they should be

‘unwrapped’ by adding or subtracting suitable multiples of

π to them, in order to find cos(θikV − θikI )).

P̂ ik
e =V̂ ik

m Îikm cos (θ̂ikV − θ̂ikI );

σ̂2
P ik

e
=[σ̂2

V ik
m
(Îikm )

2
+ (V̂ ik

m )
2
σ̂2
Iik
m
] cos2(θ̂ikV − θ̂ikI )

+ (V̂ ik
m )

2
(Îikm )

2
[σ̂2

θik
V

+ σ̂2
θik
I

] sin2(θ̂ikV − θ̂ikI )

(31)

Thus, the four quantities which are required by the UKF

stage from the DFT stage are u′i, yi, P ik
w′ and P ik

w , given

by (27)-(30). These quantities should be updated every T0 s,

as this is the sampling period of the UKF stage. Also, in

(26), both xik and w′ik are unknown quantities and can be

combined together as a composite state vector Xik with a

composite covariance matrix P ik
X defined as follows.

Xik=

[

xik

w′ik

]

; X̂
ik

=

[

x̂
ik

ŵ′ik

]

;P ik
X=

[

P ik
x P ik

xw′

P ik
xw′

T
P ik

w′

]

(32)

Here P ik
x is the covariance matrix of xik, and P ik

xw′ is the

cross-covariance matrix of xik and w′ik. With the above

definition, the model in (26)-(28) is redefined as follows.

Xik = gi(Xik̄,u′ik̄) + vik̄

yik = hi(Xik,u′ik) +wik
(33)

With (33) as model and xi0 as steady state estimate of xik

and with the knowledge of gi, hi, u′i, yi, P ik
w′ , P ik

w and the

process noise covariance matrix, P ik
v , the filtering equations

of UKF for kth iteration and ith unit are given as follows [9].

STEP 1: Initialize

if (k==1) then initialize x̂
ik̄ = xi0, ŵ′ik̄ = 02×1, P ik̄

x = P i0
v ,

P ik̄
xw′ = 0mi×2, P ik̄

w′ = P i0
w′ in (32) to get P ik̄

X & X̂
ik̄

.

else reinitialize ŵ′ik̄ and P ik̄
w′ in (32) according to (29),

leaving rest of the elements in X̂
ik̄

and P ik̄
X unchanged.

STEP 2: Generate sigma points

χik̄
l = X̂

ik̄
+

(

√

niP ik̄
X

)

l

, l = 1, 2, . . . , ni;

χik̄
l = X̂

ik̄
−

(

√

niP ik̄
X

)

l

, l = (ni + 1), (ni + 2), . . . , 2ni

STEP 3: Predict states

χik−

l = gi(χik̄
l ,u′ik̄); X̂

ik−

= 1
2ni

∑2ni

l=1 χ
ik−

l

P ik−

X = 1
2ni

∑2ni

l=1[χ
ik−

l − X̂
ik−

][χik−

l − X̂
ik−

]T + P ik
v

STEP 4: Predict measurements

γik−

l = hi(χik̄
l ,u′ik̄); ŷik−

= 1
2ni

∑2ni

l=1 γ
ik−

l

P ik−

y = 1
2ni

∑2ni

l=1[γ
ik−

l − ŷik−

][γik−

l − ŷik−

]T + P ik
w

P ik−

Xy = 1
2ni

∑2ni

l=1[χ
ik−

l − X̂
ik−

][γik−

l − ŷik−

]T
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STEP 5: Kalman update

Kik = P ik−

Xy(P
ik−

y )
−1

; X̂
ik

= X̂
ik−

+Kik(yik − ŷik−

)

P ik
X = P ik̄

X −Kik[P ik−

Xy ]
T

STEP 6: Output and time update

output X̂
ik

and P ik
X , k ← (k + 1), goto STEP 1.

V. CASE STUDY

A model 16-machine, 68-bus benchmark test system (Fig. 1)

has been used for the case study and MATLAB-Simulink

(using ode45 solver) running on Windows 7 has been used

for its modeling and simulation. A detailed description of the

system (including various parameters) is given in [2] or [29].

Static AVRs are used in all the machines, and their parameters

are given in [17].
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Fig. 1. Line diagram of the 16-machine, 68-bus, power system model

The robust dynamic state estimator (developed in Section II-

Section IV) runs at the location of each generation unit, and

provides dynamic state estimates for the unit. The measure-

ments which are required by the estimator are V (t) and I(t),
and are generated by adding noise to the simulated analogue

values of terminal voltage and current of the unit. As explained

in Section III, N , f0 and fs are taken as 1200, 50 Hz and

40000 Hz, respectively. The sampling period of UKF stage,

T0, is taken as 0.01s, as explained in [9] or [30]; and thus, the

estimates obtained from the DFT stage are also updated every

0.01s. Also, P ik
v is found as described in [30]. For comparison

with the proposed estimator, another UKF based dynamic state

estimator which uses PMU measurements (given in [9]) also

runs at each unit’s location and is termed as DSE-with-PMU.

Estimate of the internal angle in case of DSE-with-PMU is

obtained by subtracting the measurement of terminal voltage

phase from the estimate of rotor angle.

The measurement error for the robust DSE method is the

percentage error in the analogue signals of V (t) and I(t),
while the measurement error for DSE-with-PMU method is

the total vector error (TVE) in the phasor measurements of

terminal voltage and current. As the measurement errors for

the two estimators are of two different kinds, these meth-

ods can not be directly compared for same noise levels.

Nevertheless, performance of the two methods for standard

measurement errors can be compared, as specified by IEEE

[15]-[16], [31], and IEC [32]. As mentioned in these standards,

the measurement error in CTs/VTs should be less than 3%,

while the standard error for PMUs is 1% TVE. Hence, in the

base case for comparison, the measurement error for robust

DSE is taken as 3%, while for the DSE-with-PMU method, it

is taken as 1% TVE.

The system starts from a steady state in the simulation. Then

at t = 1s, a disturbance is created by a three-phase fault at bus

54 and is cleared after 0.18s by opening of one of the tie-lines

between buses 53-54. The simulated states, along with their

estimated values for the base case for one of the units (the 13th

unit), have been plotted in Fig. 2 and Fig. 4 . Corresponding

estimation errors, which is the difference of estimated and

simulated values, have also been plotted in Fig. 3 and Fig. 5.
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Fig. 2. Comparison of DSE for α13, ω13 and E
′
13

q for the base case

It can be seen in Fig. 2 – 5 that for robust DSE the plots of

estimated values almost coincide with those of the simulated

values and the estimation errors are low, but for the DSE-

with-PMU method the difference between the simulated and

estimated values is apparent and the estimation errors are

much higher. This shows that the proposed method performs

accurately with standard measurement errors in CTs/VTs,

while DSE-with-PMU fails to do so with standard errors in

PMU measurements.

Robustness of the proposed method has been tested against

varying noise levels in measurements. Fig. 6 shows the esti-

mation results for ω13 for two more cases: in the first case

the noise levels are one-third the base case, while in the

second case the noise levels are thrice the base case. Also,

root mean squared errors (RMSEs) for varying error levels

have been calculated and tabulated in Table I–Table II for the

two methods. It can be observed that the performance of the
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proposed method remains robust to errors up to 3%, and even

for 10% error, its performance deteriorates only to a small

extent. On the other hand, DSE-with-PMU method does not

perform accurately for error levels above 0.3% TVE, that is,

it is not accurate for 1% TVE and 3% TVE.
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Fig. 6. Comparison of DSE for ω13 for varying noise levels

The proposed method has also been tested in presence of

non-Gaussian noises. This testing has been done by including

three different colored noises in the measurements: pink noise,

blue noise and violet noise. The estimation results in presence

of colored noises for both the proposed method and the DSE-
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TABLE I
ROOT MEAN SQUARE ERRORS FOR ROBUST DSE

Estimation RMSEs for various measurement errors (MEs) (in p.u.)

State 0.3% ME 1% ME 3% ME 10% ME

α13
4.85× 10

-4
4.97× 10

-4
5.80× 10

-4
4.94× 10

-3

ω13
3.42× 10

-5
5.66× 10

-5
7.81× 10

-5
3.97× 10

-4

E
′
13

q 1.44× 10
-4

1.50× 10
-4

1.76× 10
-4

3.15× 10
-3

E
′
13

d
3.22× 10

-4
3.27× 10

-4
3.31× 10

-4
4.13× 10

-3

ψ13

2q 3.54× 10
-4

3.67× 10
-4

4.18× 10
-4

4.51× 10
-3

ψ13

1d
1.92× 10

-4
2.25× 10

-4
4.25× 10

-4
2.63× 10

-3

V 13
r 6.92× 10

-4
1.56× 10

-3
4.54× 10

-3
1.38× 10

-2

TABLE II
ROOT MEAN SQUARE ERRORS FOR DSE-WITH-PMU

Estimation RMSEs for various measurement TVEs (in p.u.)

State 0.1% TVE 0.3% TVE 1% TVE 3% TVE

α13
8.06× 10

-4
2.31× 10

-3
7.19× 10

-3
3.70× 10

-2

ω13
7.04× 10

-5
9.44× 10

-5
4.14× 10

-4
1.95× 10

-3

E
′
13

q 1.22× 10
-4

3.58× 10
-4

1.23× 10
-3

6.49× 10
-3

E
′
13

d
5.13× 10

-4
7.11× 10

-4
1.87× 10

-3
8.95× 10

-3

ψ13

2q 6.31× 10
-4

8.82× 10
-4

2.81× 10
-3

1.39× 10
-2

ψ13

1d
2.36× 10

-4
6.31× 10

-4
2.21× 10

-3
1.34× 10

-2

V 13
r 1.44× 10

-3
4.77× 10

-3
1.58× 10

-2
6.06× 10

-2

with-PMU method have been presented in Fig. 7, Tables III

and IV. It can be observed from these figure and tables that

the proposed method remains robust to non-Gaussian noises

as well, while the DSE-with-PMU method gives inaccurate

estimation results. It can also be observed that the proposed

method has higher estimation errors for pink noise than for

blue or violet noises.
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Fig. 7. Comparison of DSE for ω13 for colored noises for base case

Computational feasibility of the proposed method can be

inferred from the fact that the entire simulation, including

simulation of the power system, with two estimators at each

TABLE III
ROOT MEAN SQUARE ERRORS FOR ROBUST DSE WITH NON-GAUSSIAN

COLORED NOISES

Estimation RMSEs (in p.u.) for 3% noise in measurements

State Pink noise Blue noise Violet noise

α13
8.86× 10

-4
4.84× 10

-4
4.87× 10

-4

ω13
9.26× 10

-5
9.73× 10

-5
9.77× 10

-5

E
′
13

q 3.54× 10
-4

1.55× 10
-4

1.56× 10
-4

E
′
13

d
5.29× 10

-4
3.25× 10

-4
3.27× 10

-4

ψ13

2q 6.88× 10
-4

3.55× 10
-4

3.56× 10
-4

ψ13

1d
7.59× 10

-4
1.92× 10

-4
1.91× 10

-4

V 13
r 7.92× 10

-3
5.94× 10

-4
5.19× 10

-4

TABLE IV
ROOT MEAN SQUARE ERRORS FOR DSE-WITH-PMU WITH

NON-GAUSSIAN COLORED NOISES

Estimation RMSEs (in p.u.) for 1% noise in measurements

State Pink noise Blue noise Violet noise

α13
6.84× 10

-3
1.18× 10

-2
1.85× 10

-2

ω13
3.89× 10

-4
3.45× 10

-4
5.03× 10

-4

E
′
13

q 9.71× 10
-4

2.61× 10
-3

5.02× 10
-3

E
′
13

d
1.64× 10

-3
4.23× 10

-3
6.56× 10

-3

ψ13

2q 2.54× 10
-3

5.35× 10
-3

7.98× 10
-3

ψ13

1d
1.99× 10

-3
2.89× 10

-3
4.60× 10

-3

V 13
r 1.43× 10

-2
2.07× 10

-2
2.69× 10

-2

machine, runs in faster-than-real-time on MATLAB-Simulink

running on Windows 7 on a personal computer with Intel Core

2 Duo, 2.0 GHz CPU and 2 GB RAM. The expression ‘faster-

than-real-time’ here means that 1 second of the simulation

takes less than 1 second of processing time. Also, the total

execution time for all the operations for the proposed method

for one time step (that is for one iteration) is 0.44 millisecond.

Specifically, execution time for the proposed DFT stage is 0.11

ms, while that for UKF is 0.33 ms (for both the proposed

method and the PMU method). Thus, the method can be easily

implemented using current technologies as the update rate

required by the proposed method is 10 milliseconds.

VI. CONCLUSION

A method for dynamic state estimation in power systems

has been presented which works using analogue measurements

from instrument transformers in order to make the estimation

robust to time-synchronization errors. The method is also

robust to a wide range of measurement noise which can be

encountered in state-of-the-art instrument transformers and has

practical computational requirements for real-time operation.

This has been achieved using a two-stage estimation algorithm

based on interpolated DFT and unscented Kalman filtering.

The authors believe that the method will pave the way for fast

adoption of methods of dynamic state estimation.

APPENDIX A

DERIVATION OF CRAMER RAO BOUND (CRB) FOR

PARAMETER ESTIMATION OF A SINUSOIDAL SIGNAL

Let the N samples of a sinusoidal signal Y , sampled at a

sampling frequency of fs, be given as follows.

Yk = Ym sinφk+ǫk, φk =
2πkf

fs
+θ, ∀k = 1, 2, . . . , N (34)
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Here, ǫk is the noise in Yk, and the variance of ǫk is σ2
Y . The

set of parameters which need to be estimated for (34) is Θ =
{Θ1,Θ2,Θ3} = {Ym, θ, f}. A lower bound on the variance of

any unbiased estimator of Θ is given by the CRB [33], which

is found using the inverse of the information matrix, I(Θ).
For (34), the (i, j)th element of the matrix I(Θ) is given as

follows.

Ii,j(Θ) =
1

σ2
Y

N
∑

k=1

∂Yk

∂Θi

∂Yk

∂Θj

, ∀i, j ∈ {1, 2, 3} (35)

After evaluating the partial derivatives in (35) using (34),

various elements of I(Θ) are given as follows.

I1,1(Θ) =
1

2σ2
Y

N
∑

k=1

(1− cos (2φk))

I1,2(Θ) = I2,1(Θ) =
1

2σ2
Y

N
∑

k=1

Ym sin (2φk)

I1,3(Θ) = I3,1(Θ) =
1

2σ2
Y

N
∑

k=1

Ym

2πk

fs
sin (2φk)

I2,2(Θ) =
1

2σ2
Y

N
∑

k=1

Y 2
m(1 + cos (2φk))

I2,3(Θ) = I3,2(Θ) =
1

2σ2
Y

N
∑

k=1

Y 2
m

2πk

fs
(1 + cos (2φk))

I3,3(Θ) =
1

2σ2
Y

N
∑

k=1

Y 2
m

(

2πk

fs

)2

(1 + cos (2φk))

where, φk =
2πkf

fs
+ θ

(36)

Since N >> 1, f << fs and fN/fs ≈ 1.5, as explained

in Section III, the above elements of I(Θ) get simplified to

the following expressions using basic rules of summation of

trigonometric series.

I1,1(Θ) =
1

2σ2
Y

N, I2,2(Θ) =
1

2σ2
Y

Y 2
mN

I1,2(Θ) = I2,1(Θ) = I1,3(Θ) = I3,1(Θ) = 0

I2,3(Θ) = I3,2(Θ) =
1

2σ2
Y

Y 2
m

2π

fs

N(N + 1)

2

I3,3(Θ) =
1

2σ2
Y

Y 2
m

(

2π

fs

)2
N(N + 1)(2N + 1)

6

(37)

With I(Θ) defined as in (37), various elements of its inverse,

I
−1(Θ), are obtained as follows.

I
−1
1,1(Θ) =

2σ2
Y

N
, I

−1
2,2(Θ) =

4σ2
Y

Y 2
m

(2N + 1)

N(N − 1)

I
−1
1,2(Θ) = I

−1
2,1(Θ) = I

−1
1,3(Θ) = I

−1
3,1(Θ) = 0

I
−1
2,3(Θ) = I

−1
3,2(Θ) =

−12σ2
Y

Y 2
mN(N − 1)

fs
2π

I
−1
3,3(Θ) =

24σ2
Y

Y 2
mN(N2 − 1)

(

fs
2π

)2

(38)

Finally, the CRBs for the variances of an estimator of Ym, θ
and f are given by I

−1
1,1(Θ), I

−1
2,2(Θ) and I

−1
3,3(Θ) in (38),

respectively, after substituting Ym with its estimate Ŷm.
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