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Abstract—This paper presents a generalized solution to the
problem of optimal control of systems having an extra set of
exogenous inputs besides control inputs. The solution is derived
in the framework of linear quadratic control and it is termed
‘extended linear quadratic regulator (ELQR)’. The ELQR is
applied for control of unstable or poorly damped oscillatory
dynamics occurring in a power system and is shown to be
significantly more cost effective than the classical power system
stabilizer (PSS) based approach.

Index Terms—optimal control, extended linear quadratic regu-
lator, exogenous input, external disturbance, pseudo-input, power
system dynamics, small signal stability, power system stabilizer

NOMENCLATURE

0m×n a matrix of zeroes of size (m× n)
Γ the function of quadratic costs without considering u′

Γ
′ the quadratic cost function considering both u and u′

A the matrix corresponding to states

B the matrix corresponding to u

E the matrix corresponding to u′

G the gain corresponding to state-feedback

Im a (m×m) identity matrix

K the feedback gain corresponding to u′

K ′ the supplementary feedback in ELQR

L the matrix corresponding to K in ELQR

L′ the matrix corresponding to K ′ in ELQR

P algebraic Riccati equation’s positive definite solution

Q the cost matrix of x

R the cost matrix of u

S the cost matrix of u′

u the control inputs’ vector

u′ the exogenous inputs’ vector

x the states’ vector

k the kth time sample

M the final time for reaching steady state

T the symbol for transpose

T0 the system’s sampling period in s

I. INTRODUCTION

THE branch of control-systems theory that studies cost-

minimizing operation of a dynamic system by placing

Grants EESC-P55251 and EP/K036173/1 from EPSRC, U.K., support this
work.

constraints on control effort is known as optimal control. A

specific case of optimal control is the linear quadratic (LQ)

problem, in which the system dynamics are described by

linear and time invariant (LTI) differential equations and the

associated cost (which needs to be optimized) is a quadratic

function of system state-deviations and control-efforts [1]. It

was shown by R. E. Kalman that the solution to the LQ

problem is a state feedback controller with a constant gain and

the solution was termed ‘linear quadratic regulator (LQR)’ [2].

The inputs which are considered in the LQ problem are

control inputs, which means that each input applied to the

system can be fully altered by the controller. But, this is

not true for a general system, and some of the inputs may

also be external disturbances which can neither be altered

nor be disabled. These inputs are also known as exogenous

inputs. Some examples of systems with external disturbances

in control literature can be found in [3], [4] and [5]. A recent

example in power system literature can also be found in [6],

wherein external disturbances are called ‘pseudo-inputs’.

The optimal control problem for systems with exogenous

inputs can be found in studies such as [7]-[9]. In these

studies, the exogenous input is accommodated in the LQR

solution by finding a control input which minimizes the effect

of the exogenous input on the system dynamics. But, this

does not optimize the net costs corresponding to control-

efforts and deviations in system states. Thus, the technique

of accommodating the exogenous input in the LQR solution

fails to achieve the chief objective of optimal control.

A new solution to the problem of optimal control of systems

with exogenous inputs has been proposed in this paper, and

the solution not only guarantees optimal accommodation of

the external disturbance, but also optimizes the net quadratic

costs corresponding to control-efforts and deviations in states.

The solution is valid for any sequence of external disturbances.

The practical applicability of the method is demonstrated for

power systems, and the proposed method is employed for

decentralized control for ensuring small-signal stability of a

large-scale power system model.

Rest of the paper is organized as follows. Section II briefly

explains the classical LQR solution, while Section III describes

the proposed solution. The solution is demonstrated on a

model of a power system in Section IV. Section V is the
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concluding section.

II. LINEAR QUADRATIC REGULATOR

An open-loop LTI system without any external disturbance

can be described by the following discrete-time equation.

xk+1 = Axk +Buk (1)

The quadratic cost for the above system for M + 1 samples

can be written as:

Γ =
∑M

k=0
[xT

kQxk + uT
kRuk] where Q ≥ 0, R > 0 (2)

If Γ is minimized with respect to (w.r.t.) uk then the LQR

solution is obtained as follows.

uk = −Gkxk, k = 0, 1, . . . , (M−1), uM = 0; where, (3)

Gk−1 = (R+BTP kB)
−1

BTP kA, PM = Q, and, (4)

P k−1=Q+AT [P k − P kB(R+BTP kB)
−1

BTP k]A (5)

The optimal control policy obtained above is finite horizon

if M is finite; otherwise it is called infinite horizon policy.

P k and Gk are bounded in the case of infinite horizon and a

solution exists for them if and only if (A,B) is shown to be

stabilizable. The following algebraic Riccati equation (ARE)

needs to be solved to obtain the steady-state solution.

P = Q+AT [P − PB(R+BTPB)
−1

BTP ]A; (6)

G = (R+BTPB)
−1

BTPA (7)

III. EXTENDED LINEAR QUADRATIC REGULATOR

An open-loop LTI system with external disturbances can be

described by the following discrete-time equation.

xk+1 = Axk +Buk +Eu′

k (8)

The following equation states the above system’s quadratic-

costs for M + 1 samples.

Γ
′ =

∑M

k=0
[xT

kQxk + uT
kRuk + u′T

k Su′

k], where,

Q ≥ 0, R > 0, S ≥ 0; (9)

The optimal control policy for (8) can be found by minimiz-

ing Γ
′ in (9) w.r.t. uk. The minimization leads to the following

optimal control law.

Theorem 1. For an open-loop linear time invariant system

having external disturbances (described by (8)), such that

u′

k = 0 ∀ k ≥ M , A is non-singular and u′

k is finite

and measurable, the optimal control law for 0 ≤ k < M
is described by (10)-(12) and for k ≥ M it is uk = 0.

uk = −(Gkxk +Kku
′

k +K ′

k); (10)

Kk = Gk(P k −Q)
−1

Lk, K ′

k = Gk(P k −Q)
−1

L′

k;
(11)

LM = 0,L′

M = 0,Lk = (A−BGk)
T
(P k+1E +Lk+1),

L′

k = (A−BGk)
T
(Lk+1(u

′

k+1 − u′

k) +L′

k+1) (12)

Gk and P k are given by (4)-(5), uk ∈ R
l×1, xk ∈ R

m×1,

u′

k ∈ R
n×1, Gk ∈ R

l×m, Kk ∈ R
l×n, K ′

k ∈ R
l×1, P k ∈

R
m×m, Q ∈ R

m×m, Lk ∈ R
m×n, L′

k ∈ R
m×1, A ∈ R

m×m,

B ∈ R
m×l and E ∈ R

m×n.

Proof. The system described by (8) needs to be modified

slightly in order to derive Theorem 1. The modification is

to append a constant external disturbance to u′

k as follows.

xk+1 = Axk +Buk + Fwk;

where, wk =

[

u′

k

1

]

, F =
[

E 0m×1

]

; (13)

wk = Jkwk−1, where,Jk =

[

In u′

k − u′

k−1

01×n 1

]

; (14)

Fwk =
[

E 0m×1

]

[

u′

k

1

]

= Eu′

k + 0m×1 = Eu′

k (15)

As mentioned earlier, xk ∈ R
m×1 and u′

k ∈ R
n×1. The

equalities in (15) shows that appending a constant external

disturbance, 1, does not effect the original system’s dynamics.

This is required to find an iterative policy for optimal control.

It is not possible to express u′

k in terms of u′

k−1 unless a

new external disturbance wk is defined using (13). By doing

this, it is possible to express wk in terms of wk−1 using (14).

The net quadratic-cost for M +1 samples for the new system

(described by (13)) is given as follows.

Γ
′ =

∑M

k=0
[xT

kQxk + uT
kRuk +wT

kUwk], (16)

where, U =

[

S 0n×1

01×n 0

]

,Q ≥ 0,R > 0,S ≥ 0 (17)

wT
kUwk =

[

u′T
k 1

]

[

S 0n×1

01×n 0

][

u′

k

1

]

= u′T
k Su′

k (18)

The equations (18) and (17) show that the constant external

disturbance 1 in wk does not have any associated cost. Thus,

the two systems described by (16) and (9), respectively, have

identical quadratic costs.

Since u′

k = 0 ∀ k ≥ M and the steady state of the system,

xM , is reached at k = M , therefore the optimal control input

is uk = 0 ∀ k ≥ M . The cost for k = M is, thus, optimal

and is given by Γ
′opt
M = xT

MQxM = xT
MPMxM . The net

cost for k = M–1 and k = M , such that the cost for k = M
is optimal, is given as follows.

Γ
′

M–1 = xT
M–1QxM–1 + uT

M–1RuM–1

+wT
M–1UwM–1 + Γ

′opt

M (19)

Substituting Γ
′opt
M = xT

MPMxM and xM = AxM–1 +
BuM–1 + FwM–1 in (19), gives the following expression.

Γ
′

M–1 = xT
M–1QxM–1 + uT

M–1RuM–1 +wT
M–1UwM–1

+ (AxM–1 +BuM–1 + FwM–1)
TPM (AxM–1

+BuM–1 + FwM–1) (20)



The partial derivative of Γ
′

M–1 in (20) w.r.t. uM–1 comes

as:

∂Γ′

M–1/∂uM–1 = 2[RuM–1

+BTPM (AxM–1 +BuM–1 + FwM–1)] (21)

∵ ∂Γ′

M–1/∂uM–1 = 0, for uM–1 = u
opt
M–1, (22)

∴ Ru
opt
M–1+BTPM (AxM–1+Bu

opt
M–1+FwM–1) = 0, (23)

⇒ u
opt
M–1 = −(GM–1xM–1 +ZM–1wM–1), (24)

where, GM–1 = (R+BTPMB)
−1

BTPMA, (25)

ZM–1 = (R+BTPMB)
−1

BTPMF (26)

Also, since ∂2
Γ
′

M–1/(∂uM–1)
2 = (R + BTPMB) > 0

(because R > 0 and PM ≥ 0), and Γ
′

M–1 is a quadratic

function of uM–1, hence, u
opt
M–1 provides the global minimum

value for Γ
′

M–1. Substituting u
opt
M–1 from (24) for uM–1 in

(19):

Γ
′opt

M–1 = xT
M–1PM–1xM–1 + 2xT

M–1V M–1wM–1

+wT
M–1WM–1wM–1; (27)

where, PM–1 = Q+GT
M–1RGM–1

+ (A−BGM–1)
T
PM (A−BGM–1), (28)

V M–1 = GT
M–1RZM–1

+ (A−BGM–1)
T
PM (F −BZM–1), (29)

WM–1 = U +ZT
M–1RZM–1

+ (F −BZM–1)
T
PM (F −BZM–1) (30)

The net cost for k = (M–2), (M–1) and M , such that the

net cost for k = (M–1) and M is optimal (given by Γ
′opt
M–1),

is Γ
′

M–2 = xT
M–2QxM–2 +uT

M–2RuM–2 +wT
M–2UwM–2 +

Γ
′opt
M–1, and applying the same steps which are used to find

Γ
′opt
M–1, the expressions for u

opt
M–2 and Γ

′opt
M–2 come as follows.

u
opt
M–2 = −(GM–2xM–2 +ZM–2wM–2), (31)

where, GM–2 = (R+BTPM–1B)
−1

BTPM–1A, (32)

ZM–2 = (R+BTPM–1B)
−1

BT (PM–1F

+ V M–1JM–1); (33)

Γ
′opt

M–2 = xT
M–2PM–2xM–2 + 2xT

M–2V M–2wM–2

+wT
M–2WM–2wM–2, (34)

where, PM–2 = (A−BGM–2)
T
PM–1(A−BGM–2)

+GT
M–2RGM–2 +Q, (35)

V M–2 = (A−BGM–2)
T
PM–1(F −BZM–2)

+ (A−BGM–2)
T
V M–1JM–1 +GT

M–2RZM–2, (36)

WM–2 = (F −BZM–2)
T
[PM–1(F −BZM–2)

+ V M–1JM–1] + JT
M–1WM–1JM–1

+ZT
M–2RZM–2 +U (37)

After evaluating the terms u
opt
M–3 and Γ

′opt
M–3 following the

similar steps as above, their expressions are found to be similar

to (31) and (34), respectively, the only difference being that

M–2 gets replaced by M–3, and M–1 gets replaced by M–2.

This similarity holds for other expressions of u
opt

k and Γ
′opt

k ,

for all k < M–3. Thus, applying induction for k < M and

using initial conditions V M = 0m×(n+1) and PM = Q,

the optimal cost for Γ
′ in (16) is found to be Γ

′opt
0 (and is

evaluated by iteratively finding the sequence Γ
′opt
M , Γ

′opt
M–1,

. . . , Γ
′opt
1 , Γ

′opt
0 ) and the corresponding optimal control is

found to be:

u
opt

k = −(Gkxk +Zkwk), 0 ≤ k < M ; (38)

where, Gk = (R+BTP k+1B)
−1

BTP k+1A (39)

Zk = (R+BTP k+1B)
−1

BT (P k+1F + V k+1Jk+1) (40)

P k = Q+GT
kRGk +(A−BGk)

T
P k+1(A−BGk) (41)

V k = GT
kRZk + (A−BGk)

T
[P k+1(F −BZk)

+ V k+1Jk+1] (42)

From above expressions it may be inferred that u
opt

k is

independent of W k. Moreover, P k can be stated as follows

(using (41)).

P k = Q+GT
k (R+BTP k+1B)Gk −GT

kB
TP k+1A

+ATP k+1(A−BGk) (43)

∵ GT
k (R+BTP k+1B)Gk = GT

kB
TP k+1A (from (39))

∴ P k = Q+ATP k+1(A−BGk), (44)

After substituting Gk from (39) in (44), the following expres-

sion for P k is found.

P k = Q+AT (P k+1B(R+BTP k+1B)
−1

BTP k+1)A (45)

In a similar way, V k (using (42)) can be re-expressed as:

V k = (A−BGk)
T
(P k+1F + V k+1Jk+1)

+GT
k (R+BTP k+1B)Zk −ATP k+1BZk, (46)

∵ GT
k (R+BTP k+1B)Zk = ATP k+1BZk (using (39)),

∴ V k = (A−BGk)
T
(P k+1F + V k+1Jk+1) (47)

From (44):

(A−BGk)
T
= (P k −Q)A−1P−1

k+1 (48)

Substituting (A−BGk)
T

from (48) in (47):

V k = (P k −Q)A−1(F + P−1
k+1V k+1Jk+1) (49)

Using (39), Zk in (40) can be stated as:

Zk = GkA
−1(F + P−1

k+1V k+1Jk+1); and using (49),

⇒ Zk = Gk(P k −Q)
−1

V k (50)



Partitioning V k in (47) as
[

Lk L′

k

]

,Lk ∈ R
m×n,L′

k ∈

R
m×1:
[

Lk L′

k

]

= (A−BGk)
T
(P k+1F +

[

Lk+1 L′

k+1

]

Jk+1)

⇒
[

Lk L′

k

]

= (A−BGk)
T
(P k+1

[

E 0m×1

]

+
[

Lk+1 L′

k+1

]

[

In u′

k+1 − u′

k

01×n 1

]

) (51)

⇒ Lk = (A−BGk)
T
(P k+1E +Lk+1), and, (52)

L′

k = (A−BGk)
T
(Lk+1(u

′

k+1 − u′

k) +L′

k+1) (53)

Partitioning Zk in (38) as
[

Kk K ′

k

]

,Kk ∈ R
l×n,K ′

k ∈

R
l×1, where l is the number of elements in uk:

u
opt

k = −

(

Gkxk +
[

Kk K ′

k

]

[

u′

k

1

])

,

⇒ u
opt

k = −(Gkxk +Kku
′

k +K ′

k) (54)

and using (50),
[

Kk K ′

k

]

= Gk(P k −Q)
−1[

Lk L′

k

]

⇒

Kk = Gk(P k −Q)
−1

Lk; K ′

k = Gk(P k −Q)
−1

L′

k (55)

Hence, with (39), (45), (52)-(55), Theorem 1 has been proved.

The above optimal solution has been termed as the ‘ex-

tended linear quadratic regulator (ELQR)’. Finite horizon case

can be applied to the ELQR solution only if the sequence

of external disturbances is known to be finite, otherwise

only infinite horizon case is applicable. Provided (A,B) is

stabilizable, the solutions for the infinite horizon case for P k,

Gk, Kk and Lk exist, and the solutions are G, P (given by

(6)-(7)), and L, K (given by (56)-(57)).

L = (A−BG)
T
(PE +L) = (P −Q)A−1(E + P−1L),

(this is because (A−BG)
T
= (P−Q)A−1P−1 from (48))

⇒ L = (A(P −Q)
−1

− P−1)
−1

E (56)

K = G(P −Q)
−1

L, substituting L from (56):

⇒ K = G(A− P−1(P −Q))
−1

E (57)

The terms Gk and P k for ELQR remain same as LQR.

The terms Kk and Lk do not depend on u′

k, and hence can

be calculated just with the knowledge of A, B, E, Q and R.

The terms K ′

k and L′

k need the knowledge of the present and

future time samples of u′

k. Therefore, it is assumed that u′

k

is known in advance, and if the sequence of u′

k is not known

in advance, the terms which can be accurately calculated are

Gk, P k, Kk and Lk, whereas the terms K ′

k and L′

k can only

be estimated/predicted using the estimated/predicted values of

u′

k.

IV. APPLICATION EXAMPLE: DECENTRALIZED CONTROL

OF POWER SYSTEM DYNAMICS

ELQR can be employed for control of any system which can

be expressed in the form of (8). In the following illustrative

example a highly non-linear power system model is controlled

using the ELQR methodology.

A. Power system modeling

It was proved and demonstrated in [6] that if the measure-

ments of voltage magnitude and voltage phase acquired from

the terminal bus of a synchronous generation unit in a mul-

timachine power system are treated as external disturbances,

the dynamic equations for that unit get decoupled from rest of

the power system. The equation for the ith unit in the system

is written in the decentralized form as (58):

ẋci(t) = gi(xci(t),uci(t),u
′

ci(t)) (58)

The subscript c denotes that (58) is in continuous-time form. gi

denotes the differential function of the various states, xci, the

external disturbances, u′

ci (which are the voltage magnitude

and phase), and the control input uci (which is the input to

the automatic voltage regulator). The details of gi and the

various states of a machine are given in [10].

A power system can be controlled in a decentralized manner

using the decoupled equations given by (58). Additionally,

nonlinear Kalman filtering can generate dynamic state esti-

mates for that unit with accuracy and precision. This algorithm

of decentralized dynamic state estimation (DSE) is employed

for getting the estimates of states needed by the ELQR [6].

B. Damping control

An operating constraint for power systems is that the damp-

ing ratios of all the closed-loop electromechanical eigenvalues

of the system should be more than a specified percentage.

Thus, the electromechanical eigenvalues for a generation unit

should be in the continuous-plane’s left half, inside a conical

section. This conical section corresponds to a spiral section [1]

in the discrete-plane, and thus, the discrete-domain eigenvalues

must be inside this spiral. Since enclosing the closed-loop

poles inside a spiral is mathematically very difficult, the spiral

is substituted with a circle, and the eigenvalues are enclosed

in that circle. A circle best substitutes the spiral if the spiral

is tangentially intersected by the circle at the coordinates at

which the electromechanical eigenvalues are supposed to lie.

As each machine has only one pair of electromechanical poles,

a unique substituting disk can be found for this pair.

It can be shown from this paper’s Theorem 1 and Theorem

2 in [12] that the control law for enclosing a system’s closed-

loop eigenvalues inside a circle of radius a and center (b, 0)
is similar to (6)-(7) and (56)-(57), the only difference is that

A, B and E are replaced by (A − bI)/a, B/a and E/a,

respectively.

C. ELQR application

The continuous-time equation in (58) is linearized and

discretized to covert it in the form of equation (8) so that the

ELQR control gains can be calculated (after modifying the

state matrices according to Section IV-B). This linearization

and discretization of (58) is done every second, so that the

non-linearity in (58) is dynamically reflected in the control

gains. It should be noted that as the voltage magnitude and

phase can only be known for past and present samples, the

term K ′

k cannot be calculated. Also, offline values of the



external disturbances showed that K ′

k provides insignificant

contribution to the optimal control law of Theorem 1. Hence,

only the gains G and K are used for control.

D. Implementation and validation

The study of decentralized control of power systems using

the ELQR methodology has been conducted on a 16-machine,

68-bus benchmark system. The system and its parameters are

described in detail in [10].

MATLAB Simulink has been used for simulating the system

and the ELQR control is applied on each machine in the sys-

tem. Comparison simulations are also conducted by replacing

the ELQR with a classical PSS on each machine [11].

E. Control performance

At the start of the simulation the power system is in steady

state. At t = 1s a 3-phase fault is simulated on one of the

links in the power flow path between two nodes. The link is

immediately disconnected to clear the fault.

Fig. 1 plots the relative speed of the rotors of units 13 and

16 and the electric-power flow in the link between nodes 60

and 61 (which is a link between two areas) for PSS control

versus ELQR control. Table I presents a comparison of total

costs for three operating conditions. It can be observed that

the net quadratic costs decrease by 24% (on an average) for

the case of ELQR when compared to PSS.
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Fig. 1. Control performance of PSS vs ELQR

TABLE I
PSS VS ELQR: QUADRATIC COSTS

Operating condition: Net quadratic Net quadratic
faulted link and inter-area costs for costs for

electric-power flow PSS control (p.u.) ELQR control (p.u.)

53-54, 700 MW 1.87 1.40

53-54, 100 MW 0.30 0.18

27-53, 900 MW 0.20 0.18

V. CONCLUSIONS

An optimal control scheme has been proposed for systems

in which both control inputs and external disturbances are

present. The scheme is termed as extended LQR, and its cost

effectiveness has been rigorously derived. The applicability

of the scheme has been shown on the model of a complex

multimachine system.
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