22 research outputs found

    Residential green space and child intelligence and behavior across urban, suburban, and rural areas in Belgium: A longitudinal birth cohort study of twins.

    No full text
    BACKGROUND:Exposure to green space has beneficial effects on several cognitive and behavioral aspects. However, to our knowledge, no study addressed intelligence as outcome. We investigated whether the level of urbanicity can modify the association of residential green space with intelligence and behavior in children. METHODS AND FINDINGS:This study includes 620 children and is part of the East Flanders Prospective Twin Survey (EFPTS), a registry of multiple births in the province of East Flanders, Belgium. Intelligence was assessed with the Wechsler Intelligence Scale for Children-Revised (WISC-R) in 620 children (310 twin pairs) between 7 and 15 years old. From a subset of 442 children, behavior was determined based on the Achenbach Child Behavior Checklist (CBCL). Prenatal and childhood residential addresses were geocoded and used to assign green space indicators. Mixed modeling was performed to investigate green space in association with intelligence and behavior while adjusting for potential confounding factors including sex, age, parental education, neighborhood household income, year of assessment, and zygosity and chorionicity. We found that residential green space in association with both intelligence and behavior in children was modified by the degree of urbanicity (p < 0.001). In children living in an urban environment, multivariable adjusted mixed modeling analysis revealed that an IQR increment of residential green space (3,000-m radius) was associated with a 2.6 points (95% CI 1.4-3.9; p < 0.001) higher total intelligence quotient (IQ) and 2.0 points (95% CI -3.5 to -0.4; p = 0.017) lower externalizing behavioral score. In children residing in a rural or suburban environment, no association was found. A limitation of this study is that no information was available on school location and the potential for unmeasured confounding (e.g., time spend outdoors). CONCLUSIONS:Our results indicate that residential green space may be beneficial for the intellectual and the behavioral development of children living in urban areas. These findings are relevant for policy makers and urban planners to create an optimal environment for children to develop their full potential

    Newborn telomere length predicts later life telomere length: Tracking telomere length from birth to child- and adulthood

    No full text
    Background Telomere length (TL) is considered a biological marker of aging and may indicate age-related disease susceptibility. Adults and children show a fixed ranking and tracking of TL over time. However, the contribution of an individual's initial birth TL to their later life TL is unknown. We evaluated change and tracking of TL from birth to child- and adulthood. Methods Telomere length at birth was measured using qPCR in two independent prospective birth cohorts. After a median follow-up period of 4 years in ENVIRONAGE (n = 273) we assessed leukocyte telomere length (LTL) and after 23 years in EFPTS (n = 164) buccal TL was assessed. Correlations and multivariable regression models were applied to study telomere tracking and determinants of TL change from birth onwards. Findings In children, LTL at the age of 4 correlates with TL at the start of life both in cord blood (r = 0.71, P < 0.0001;) and placenta (r = 0.60, P < 0.0001) and was –11.2% and –33.1% shorter, respectively. In adulthood, buccal TL at the age of 23 correlates with placental TL (r = 0.46, P < 0.0001) and was –35.9% shorter. TL attrition was higher in individuals with longer birth TL. However, based on TL ranking, individuals do not tend to change dramatically from TL rank after 4 or 23 years of follow-up. Finally, longer maternal TL associates with lower telomere attrition in the next generation. Interpretation The high prediction of newborn TL for later life TL, and stable TL ranking from birth onwards underscores the importance of understanding the initial setting of newborn TL and its significance for later life

    Birth outcomes of twins after multifetal pregnancy reduction compared with primary twins

    No full text
    BACKGROUND: The introduction of assisted reproductive technology and the trend of increasing maternal age at conception have contributed to a significant rise in the incidence of multiple pregnancies. Multiple pregnancies bear several inherent risks for both mother and child. These risks increase with plurality and type of chorionicity. Multifetal pregnancy reduction is the selective abortion of ≥1 fetuses to improve the outcome of the remaining fetus(es) by decreasing the risk of premature birth and other complications. OBJECTIVE: This study aimed to compare birth outcomes of trichorionic triplets reduced to twins with those of trichorionic triplets and primary dichorionic twins. The added value of this study is the comparison with an additional control group, namely primary dichorionic twins. STUDY DESIGN: This was a retrospective cohort study. Data from January 1990 to November 2016 were collected from the East Flanders Prospective Twin Survey, one of the largest European multiple birth registries. A total of 85 trichorionic triplet pregnancies (170 neonates) undergoing multifetal pregnancy reduction to twins were compared with 5093 primary dichorionic twin pregnancies (10,186 neonates) and 104 expectantly managed trichorionic triplet pregnancies (309 neonates). The assessed outcomes were gestational age at delivery, birthweight, and small for gestational age. RESULTS: Pregnancy reduction from triplets to twins was associated with higher birthweight (+365.44 g; 95% confidence interval, 222.75–508.14 g; P&lt;.0001) and higher gestational age (1.7 weeks; 95% confidence interval, 0.93–2.46; P&lt;.0001) compared with ongoing trichorionic triplets after adjustment for sex, parity, method of conception, birth year, and maternal age. A trend toward lower risk of small for gestational age was observed. Reduced triplets had, on average, lower birthweight (−263.12 g; 95% confidence interval, −371.80 to −154.44 g; P&lt;.0001) and lower gestational age (−1.13 weeks; 95% confidence interval, −1.70 to −0.56; P=.0001) compared with primary twins. No statistically significant difference was observed between primary twins and reduced triplets that reached 32 weeks of gestation. CONCLUSION: Multifetal pregnancy reduction from trichorionic triplets to twins significantly improved birth outcomes. This suggests that multifetal pregnancy reduction of trichorionic triplets to twins is medically justifiable. However, the birth outcomes of primary twins before 32 weeks of gestation are still better than those of reduced triplets. The process of multifetal pregnancy reduction includes at least 1 fetal death by definition, and thus prevention of higher-order pregnancies is preferable.</p

    Residential green space and waist circumference affect telomere shortening in childhood: the longitudinal ChiBS study

    No full text
    BACKGROUND: Telomere shortening, recognised as one of the most well known biomarkers of biological ageing, is susceptible to various environmental and lifestyle factors, encompassed in the exposome. Research shows that telomere length is substantially determined early in life and that exposures in childhood can have important consequences in setting telomere length later in life and thus the lifespan of an individual. We explored the associations between 17 exposures and longitudinal telomere change in a child population. METHODS: Children up to the age of 9 years, from Aalter, Belgium, were enrolled in 2008 and 2010 and followed-up for 5 or 7 years (up to 2015). Relative telomere length was measured at baseline (2008 or 2010) and at follow-up, in 2015, through quantitative real-time PCR. Exposures and lifestyle factors comprised: body-mass index, waist circumference, dietary habits (ie, sugar-rich and fat-rich food intake and vegetables and fruit intake), psychosocial stress (ie, negative events, emotions, and behaviour), sleep duration, physical activity, and residential environmental quality (long-term black carbon and particulate matter exposure and residential green space). Green space was estimated from high-resolution land cover data within several buffers (50-3000 m) around the child's residence. Cross-sectional and longitudinal analyses were done by means of linear regression models, adjusting for length of follow-up, age, sex, and socioeconomic status. Effect size was expressed as β, the standardised regression coefficient of the linear regression, and was calculated by multiplying the unstandardised regression coefficient by the standard deviation of the predictor variable and dividing by the standard deviation of the outcome variable. Written informed consent was obtained from all parents. Children aged 12 years and older also provided written informed consent. Children younger than 12 years gave verbal consent. FINDINGS: 150 children (77 [51%] boys and 73 [49%] girls) aged 2·8-10·3 years (median 5·9 years [IQR 4·9-7·1]) at baseline were included in the longitudinal analysis, which showed that higher residential green space at baseline was associated with inferior telomere shortening (β=0·261; p=0·0018), whereas a higher baseline waist circumference was associated with more telomere attrition (β=-0·287; p=0·0015). These predictors were confirmed via lasso variable selection and correction for multiple testing. In addition, children with more unhealthy exposures had significantly more telomere shortening over the follow-up period than did children with less unhealthy baseline exposures (β=-0·200; p=0·017). INTERPRETATION: Residential green space and waist circumference were identified as predictors of telomere shortening in childhood. These results further showcase the benefits of a healthy lifestyle from an early age and the importance of a green environment in promoting molecular longevity from childhood onwards. FUNDING: Research Foundation Flanders (Brussels, Belgium; project number G073315N)

    Small for gestational age and exposure to particulate air pollution in the early-life environment of twins

    No full text
    Several studies in singletons have shown that maternal exposure to ambient air pollutants is associated with restricted fetal growth. About half of twins have low birth weight compared with six percent in singletons. So far, no studies have investigated maternal air pollution exposure in association with birth weight and small for gestational age in twins. We examined 4760 twins of the East Flanders Prospective Twins Survey (2002-2013), to study the association between in utero exposure to air pollution with birth weight and small for gestational age. Maternal particulate air pollution (PM10) and nitric dioxide (NO2) exposure was estimated using a spatial temporal interpolation method over various time windows during pregnancy. In the total group of twins, we observed that higher PM10 and NO2 exposure during the third trimester was significantly associated with a lower birth weight and higher risk of small for gestational age. However, the association was driven by moderate to late preterm twins (32-36 weeks of gestation). In these twins born between 32 and 36 weeks of gestation, birth weight decreased by 40.2g (95% CI: -69.0 to -11.3; p=0.006) and by 27.3g (95% CI: -52.9 to -1.7; p=0.04) in association for each 10µg/m³ increment in PM10 and NO2 concentration during the third trimester. The corresponding odds ratio for small for gestational age were 1.68 (95% CI: 1.27-2.33; p=0.0003) and 1.51 (95% CI: 1.18-1.95; p=0.001) for PM10 or NO2, respectively. No associations between air pollution and birth weight or small for gestational age were observed among term born twins. Finally, in all twins, we found that for each 10µg/m³ increase in PM10 during the last month of pregnancy the within-pair birth weight difference increased by 19.6g (95% CI: 3.7-35.4; p=0.02). Assuming causality, an achievement of a 10µg/m³ decrease of particulate air pollution may account for a reduction by 40% in small for gestational age, in twins born moderate to late preterm.status: publishe

    Exposure to Residential Green Space and Bone Mineral Density in Young Children

    No full text
    Importance: Bone mass accrual is influenced by environmental and lifestyle factors. Targeted interventions at the early stages of life might decrease fracture and/or osteoporosis risk later in life. Objective: To investigate whether early-life exposure to residential surrounding green space is associated with a change in bone mineral density in young children. Design, Setting, and Participants: In this prospective birth cohort study (ENVIRONAGE [Environmental Influence on Aging in Early Life]), mother-child pairs from Flanders, Belgium, were recruited at birth and followed up for 4 to 6 years, between October 1, 2014, and July 31, 2021. Data analysis was conducted between January and February 2022. Exposures: Green space was estimated for high green (&gt;3 m vegetation height), low green (≤3 m vegetation height), and total green (sum of high and low) within several radii (100-3000 m) around the residence after geocoding of the addresses. Main Outcomes and Measures: Radial bone mineral density was assessed using quantitative ultrasound measurement at follow-up, measured as the mean of the axially transmitted speed of sound in meters per second. Multiple linear and logistic regression models were used while accounting for relevant covariates and potential confounders. Results: The study population comprised 327 children (180 [55.0%] female; mean [SD] age, 4.6 [0.4] years at the follow-up evaluation). Early-life exposure to residential green space was associated with increased childhood bone health. An IQR increment in total green (21.2%) and high green (19.9%) space within 500 m was associated with an increase of 27.38 m/s (95% CI, 9.63-45.13 m/s) and 25.30 m/s (95% CI, 7.93-42.68 m/s) in bone mineral density, respectively. Additionally, an IQR increase in total (25.2%) and high (23.2%) green space within 1000 m was associated with a 67% (odds ratio, 0.33; 95% CI, 0.17-0.61) and 61% (odds ratio, 0.39; 95% CI, 0.18-0.75) lower risk of having a bone density lower than the sex-specific 10th percentile (3567.6 m/s for girls and 3522.8 m/s for boys). Conclusions and Relevance: In this study of children aged 4 to 6 years, higher bone mineral density and a lower risk of having low bone density were associated with higher residential green space exposure during childhood. These findings highlight the importance of early-life exposure to residential green space on bone health during critical periods of growth and development, with long-term implications..</p

    Serum gamma-glutamyl transferase, a marker of alcohol intake, is associated with telomere length and cardiometabolic risk in young adulthood

    No full text
    Abstract Studies based on self-reported alcohol consumption and telomere length show inconsistent results. Therefore, we studied the association between gamma-glutamyl transferase (GGT), a widely used biomarker of alcohol intake, and telomere length. The possible health relevance in young adulthood was explored by investigating cardiometabolic risk factors. Mixed modelling was performed to examine GGT and alcohol consumption in association with telomere length in buccal cells of 211 adults between 18 and 30 years old of the East Flanders Prospective Twin Survey. In addition, we investigated the association between GGT and cardiometabolic risk factors; waist circumference, systolic blood pressure, fasting glucose, HDL cholesterol, and triglycerides. Although we did not observe an association between self-reported alcohol consumption and telomere length, our results show that a doubling in serum GGT is associated with 7.80% (95% CI − 13.9 to − 1.2%; p = 0.02) shorter buccal telomeres, independently from sex, chronological age, educational level, zygosity and chorionicity, waist-to-hip ratio and smoking. The association between GGT was significant for all five cardiometabolic risk factors, while adjusting for age. We show that GGT, a widely used biomarker of alcohol consumption, is associated with telomere length and with risk factors of cardiometabolic syndrome, despite the young age of this study population

    Residential green space improves cognitive performances in primary schoolchildren independent of traffic-related air pollution exposure

    No full text
    Background: Cognitive performances of schoolchildren have been adversely associated with both recent and chronic exposure to ambient air pollution at the residence. In addition, growing evidence indicates that exposure to green space is associated with a wide range of health benefits. Therefore, we aimed to investigate if surrounding green space at the residence improves cognitive performance of primary schoolchildren while taking into account air pollution exposure. Methods: Cognitive performance tests were administered repeatedly to a total of 307 primary schoolchildren aged 9-12y, living in Flanders, Belgium (2012-2014). These tests covered three cognitive domains: attention (Stroop and Continuous Performance Tests), short-term memory (Digit Span Forward and Backward Tests), and visual information processing speed (Digit-Symbol and Pattern Comparison Tests). Green space exposure was estimated within several radii around their current residence (50 m to 2000 m), using a aerial photo-derived high-resolution (1 m2) land cover map. Furthermore, air pollution exposure to PM2.5 and NO2 during the year before examination was modelled for the child's residence using a spatial-temporal interpolation method. Results: An improvement of the children's attention was found with more residential green space exposure independent of traffic-related air pollution. For an interquartile range increment (21%) of green space within 100 m of the residence, a significantly lower mean reaction time was observed independent of NO2 for both the sustained-selective (-9.74 ms, 95% CI: -16.6 to -2.9 ms, p = 0.006) and the selective attention outcomes (-65.90 ms, 95% CI: -117.0 to -14.8 ms, p = 0.01). Moreover, green space exposure within a large radius (2000 m) around the residence was significantly associated with a better performance in short-term memory (Digit-Span Forward Test) and a higher visual information processing speed (Pattern Comparison Test), taking into account traffic-related exposure. However, all associations were attenuated after taking into account long-term residential PM2.5 exposure. Conclusions: Our panel study showed that exposure to residential surrounding green space was associated with better cognitive performances at 9-12 years of age, taking into account traffic-related air pollution exposure. These findings support the necessity to build attractive green spaces in the residential environment to promote healthy cognitive development in children

    Child buccal telomere length and mitochondrial DNA content as biomolecular markers of ageing in association with air pollution

    No full text
    Background: Pro-inflammatory conditions such as air pollution might induce biological ageing. However, the available evidence on such an impact in children is still very scarce. We studied in primary schoolchildren the association of ambient residential air pollution exposure with telomere length (TL) and mitochondrial DNA content (mtDNAc), two important targets of the core axis of ageing. Methods: Between 2012 and 2014, buccal TL and mtDNAc were repeatedly assessed using qPCR in 197 Belgian primary schoolchildren (mean age 10.3 years) as part of the COGNAC study. At the child's residence, recent (week), sub-chronic (month) and chronic (year) exposure to nitrogen dioxide (NO2), particulate matter ≤ 2.5 µm (PM2.5) and black carbon (BC) were estimated using a high resolution spatiotemporal model. A mixed-effects model with school and subject as random effect was used while adjusting for a priori chosen covariates. Results: An interquartile range (IQR) increment (1.9 µg/m3) in chronic PM2.5 exposure was associated with a 8.9% (95% CI: -15.4 to -1.9%) shorter TL. In contrast to PM2.5, chronic exposure to BC and NO2 was not associated with TL but recent exposure to BC and NO2 showed significant inverse associations with TL: an IQR increment in recent exposure to BC (0.9 µg/m3) and NO2 (10.2 µg/m3) was associated with a 6.2% (95% CI: -10.6 to -1.6%) and 6.4% (95% CI: -11.8 to -0.7%) shorter TL, respectively. Finally, an IQR increment in chronic PM2.5 exposure was associated with a 12.7% (95% CI: -21.7 to -2.6%) lower mtDNAc. However, no significant associations were seen for NO2 and BC or for other exposure windows. Conclusion: Chronic exposure to PM2.5 below the EU threshold was associated with child's shorter buccal TL and lower mtDNAc, while traffic-related pollutants (BC and NO2) showed recent effects on telomere biology. Our data add to the literature on air pollution-induced effects of TL and mtDNAc, two measures part of the core axis of cellular ageing, from early life onwards.The COGNAC study was supported by the European Research Council [ERC-2012-StG310898]; and the Flemish Scientific Fund [FWO, G073315N]. Esmée Bijnens holds a fellow-ship from the Marguerite-Marie Delacroix foundation. Bram Janssen and Dries Martens are postdoctoral fellows of the Research Foundation - Flanders (FWO 12W3218N and 12X9620N, respectively). Payam Dadvand is funded by a Ramón y Cajal fellowship [RYC-2012-10995] awarded by the Spanish Ministry of Economy and Finance

    Telomere tracking from birth to adulthood and residential traffic exposure

    Get PDF
    Telomere attrition is extremely rapid during the first years of life, while lifestyle during adulthood exerts a minor impact. This suggests that early life is an important period in the determination of telomere length. We investigated the importance of the early-life environment on both telomere tracking and adult telomere length.status: publishe
    corecore