462 research outputs found

    Charge exchange in collisions of 1-100-keV Sn3+ ions with H2 and D2

    Get PDF
    Absolute cross sections for single electron capture by Sn3+ colliding with H2 and D2 have been measured and calculated in the energy range of 1-100 keV. The cross sections are determined by measuring the change in ion beam current with varying target density and by measuring the yields of charged target fragments by means of a time-of-flight spectrometer. The results for D2 show good agreement with our seven-state semiclassical calculations, while for H2 the experimental results increase more strongly than the calculations toward lower energies. This discrepancy is attributed to vibrational effects, not included in the calculations, that lead to the breakdown of the Franck-Condon approximation

    Equation of State for Helium-4 from Microphysics

    Full text link
    We compute the free energy of helium-4 near the lambda transition based on an exact renormalization-group equation. An approximate solution permits the determination of universal and nonuniversal thermodynamic properties starting from the microphysics of the two-particle interactions. The method does not suffer from infrared divergences. The critical chemical potential agrees with experiment. This supports a specific formulation of the functional integral that we have proposed recently. Our results for the equation of state reproduce the observed qualitative behavior. Despite certain quantitative shortcomings of our approximation, this demonstrates that ab initio calculations for collective phenomena become possible by modern renormalization-group methods.Comment: 9 pages, 6 figures, revtex updated version, journal referenc

    Single-collision scattering of keV-energy Kr ions off a polycrystalline Cu surface

    Get PDF
    In the keV-energy regime, the scattering of krypton ions off a copper sample has been studied. In addition to the broad energy spectrum arising from multiple-collision scattering, the energy distributions of the backscattered ions exhibit prominent peaks at energies where single-collision (SC) scattering peaks are expected. Such SC peaks were shown to be absent in Sn – Mo/Ru scattering, systems of similar mass ratio and thus similar kinetics. The present Kr on Cu results allow for a comparison to a simulation package as SRIM. An important difference found between the present experiment and the predictions of SRIM is that the SC contribution is observed to decrease with scattering angle, whereas SRIM predicts this contribution to be constant. The intensity of the experimental SC peaks, though much weaker than in the SRIM simulations, may be used as markers to improve SRIM in its description of low-energy heavy particle scattering off surfaces

    Relaxation rates and collision integrals for Bose-Einstein condensates

    Full text link
    Near equilibrium, the rate of relaxation to equilibrium and the transport properties of excitations (bogolons) in a dilute Bose-Einstein condensate (BEC) are determined by three collision integrals, G12\mathcal{G}^{12}, G22\mathcal{G}^{22}, and G31\mathcal{G}^{31}. All three collision integrals conserve momentum and energy during bogolon collisions, but only G22 \mathcal{G}^{22} conserves bogolon number. Previous works have considered the contribution of only two collision integrals, G22 \mathcal{G}^{22} and G12 \mathcal{G}^{12}. In this work, we show that the third collision integral G31 \mathcal{G}^{31} makes a significant contribution to the bogolon number relaxation rate and needs to be retained when computing relaxation properties of the BEC. We provide values of relaxation rates in a form that can be applied to a variety of dilute Bose-Einstein condensates.Comment: 18 pages, 4 figures, accepted by Journal of Low Temperature Physics 7/201

    Bcc 4^4He as a Coherent Quantum Solid

    Full text link
    In this work we investigate implications of the quantum nature of bcc 4^{4}% He. We show that it is a unique solid phase with both a lattice structure and an Off-Diagonal Long Range Order of coherently oscillating local electric dipole moments. These dipoles arise from the local motion of the atoms in the crystal potential well, and oscillate in synchrony to reduce the dipolar interaction energy. The dipolar ground-state is therefore found to be a coherent state with a well defined global phase and a three-component complex order parameter. The condensation energy of the dipoles in the bcc phase stabilizes it over the hcp phase at finite temperatures. We further show that there can be fermionic excitations of this ground-state and predict that they form an optical-like branch in the (110) direction. A comparison with 'super-solid' models is also discussed.Comment: 12 pages, 8 figure

    Condensation and interaction range in harmonic boson traps: a variational approach

    Full text link
    For a gas of N bosons interacting through a two-body Morse potential a variational bound of the free energy of a confined system is obtained. The calculation method is based on the Feynman-Kac functional projected on the symmetric representation. Within the harmonic approximation a variational estimate of the effect of the interaction range on the existence of many-particle bound states, and on the N-T phase diagram is obtained.Comment: 14 pages+4 figures, submitted to phys.rev.

    Stability and collective excitations of a two-component Bose-condensed gas: a moment approach

    Full text link
    The dynamics of a two-component dilute Bose gas of atoms at zero temperature is described in the mean field approximation by a two-component Gross-Pitaevskii Equation. We solve this equation assuming a Gaussian shape for the wavefunction, where the free parameters of the trial wavefunction are determined using a moment method. We derive equilibrium states and the phase diagrams for the stability for positive and negative s-wave scattering lengths, and obtain the low energy excitation frequencies corresponding to the collective motion of the two Bose condensates.Comment: 7 pages, 6 figure

    Computational case-based redesign for people with ability impairment: Rethinking, reuse and redesign learning for home modification practice

    Get PDF
    Home modification practice for people with impairments of ability involves redesigning existing residential environments as distinct from the creation of a new dwelling. A redesigner alters existing structures, fittings and fixtures to better meet the occupant's ability requirements. While research on case-based design reasoning and healthcare informatics are well documented, the reasoning and process of redesign and its integration with individual human functional abilities remains poorly understood. Developing a means of capturing redesign knowledge in the form of case documentation online provides a means for integrating and learning from individual case-based redesign episodes where assessment and interventions are naturally linked. A key aim of the research outlined in this thesis was to gain a better understanding of the redesign of spaces for individual human ability with the view to computational modelling. Consequently, the foundational knowledge underpinning the model development includes design, redesign, case-based building design and human functional ability. Case-based redesign as proposed within the thesis, is a method for capturing the redesign context, the residential environment, the modification and the transformational knowledge involved in the redesign. Computational simulation methods are traditionally field dependent. Consequently, part of the research undertaken within this thesis involved the development of a framework for analysing cases within an online case-studies library to validate redesign for individuals and a method of acquiring reuse information so as to be able to estimate the redesign needs of a given population based on either their environment or ability profile. As home modification for people with functional impairments was a novel application field, an explorative action-based methodological approach using computational modelling was needed to underpin a case-based reasoning method. The action-based method involved a process of articulating and examining existing knowledge, suggesting new case-based computational practices, and evaluating the results. This cyclic process led to an improvement cycle that included theory, computational tool development and practical application. The rapid explosion of protocols and online redesign communities that utilise Web technologies meant that a web-based prototype capable of acquiring cases directly from home modification practitioners online and in context was both desirable and achievable. The first online version in 1998-99, encoded home modification redesigns using static WebPages and hyperlinks. This motivated the full-scale more dynamic and robust HMMinfo casestudies prototype whose action-based development is detailed within this thesis. The home modification casestudies library results from the development and integration of a novel case-based redesign model in combination with a Human- Activity-Space computational ontology. These two models are then integrated into a relational database design to enable online case acquisition, browsing, case reuse and redesign learning. The application of the redesign ontology illustrates case reuse and learning, and presents some of the implementation issues and their resolution. Original contributions resulting from this work include: extending case-based design theory to encompass redesign and redesign models, distinguishing the importance of human ability in redesign and the development of the Human-Activity-Space ontology. Additionally all data models were combined and their associated inter-relationships evaluated within a prototype made available to redesign practitioners. v Reflective and practitioner based evaluation contributed enhanced understanding of redesign case contribution dynamics in an online environment. Feedback from redesign practitioners indicated that gaining informed consent to share cases from consumers of home modification and maintenance services, in combination with the additional time required to document a case online, and reticence to go public for fear of critical feedback, all contributed to a less than expected case library growth. This is despite considerable interest in the HMMinfo casestudies website as evidenced by web usage statistics. Additionally the redesign model described in this thesis has practical implications for all design practitioners and educators who seek to create new work by reinterpreting, reconstructing and redesigning spaces
    • …
    corecore