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Quantum dynamics of evaporatively cooled Bose-Einstein condensates
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We report on dynamical simulations of Bose-Einstein condensation via evaporative cooling in an atomic
trap. The results show evidence for spontaneous vortex formation and quantum dynamics in small traps.
[S1050-2947@9)50110-9

PACS numbgs): 03.75.Fi, 05.30.Jp, 32.80.Pj, 42.50.Lc

Evaporative cooling has been successfully used to profor comparisons of these previous approximations, like the
duce Bose-Einstein condensat@®EC’s) inside magneto- quantum Monte Carlo theorig®QMTs) [10] in equilibrium
optic traps with neutral atomigl]. A number of questions systems.
arise as to the quantum state that is achieved, since this in- In our calculations, we include 310" relevant modes
volves both the dynamics of the cooling process and théwhich is a very conservative estimgtewith up to 1.0
applicability of the ergodic hypothesis. Atom-atom interac- X 10* atoms present. The quantum-state vector therefore has
tions have a strong influence on the cooling process and thever 13° ®°components. One possible approach in principle
final state in these experiments. Quantum fluctuations art$ t0 Use quantum-number-state calculations in the time do-
important in determining atom laser coherence propertie§@in- Any direct calculation that includes all the relevant
[2], especially since the experimental systems do not have 480des of the trapped atoms—up to the energy scales re-
large a particle number as traditional condensed matter e)guwed for evaporating e_ltoms to escape—is easily seen to be
periments. However, there is no guarantee that a canonic8f' €normous computational problem.

ensemble will result from evaporative cooling, as the obser- A more practical technique is to utilize pha§e-space meth-
vations are made in a transient, nonequilibrium phase ThuOds that haye already proved successful in Iaser_ theory.
' ' These techniques can handle large numbers of particles, but

convenﬂona} canonical methods may not be applicable t(?:an also systematically treat departures from classical behav-
these gxpenments. ior, including boson interactions. Generalized phase-space
In this paper, we report the use of phase-space methodgyresentations were used to correctly predict quadrature
for direct quantum-dynamical calculations of the cooling a”dsqueezed quantum soliton dynamics in optical fijars,
formation of Bose-Einstein condensates on a threeyhich are described by quantum equations nearly identical to
dimensional lattice. The results are restricted as yet to smajhgse used in atom-atom interaction studies. The coherent-
condensates, due to the Iarge numbers of modes inVOlvegtate(positive.P) phase_space equations are exacﬂy equiva_
The computational results are very similar to those observegént to the relevant quantum equations, provided phase-space
experimentally. In particular, we find quantum evaporativeboundary termg11] vanish. They have the advantage that
cooling, followed by a clear transition to a condensate. Thighey are computationally tractable for the large Hilbert
is strongly influenced by nonclassical features of the quanspaces typical of BEC experiments. Techniques of this sort
tum dynamics. The calculations indicate additional structurecan provide a first step towards extending QMT methods
which we interpret as spontaneous formation of vortices—a10] into the time domain.
process of much wider interest in other fields of phy$Ris The model that we use includes the usual nonrelativistic
These appear to originate in the residual orbital angular moHlamiltonian for neutral atoms in a traf(x), interacting via
mentum of the trapped atoms, which was neglected in previa potentialU (x), together with absorbing reservoiR€x), in
ous studies, and would provide a significant test of theg=2 or d=3 dimensions:
present theory.

Earlier calculations of cooling dynamics have usually - B2 . - . .
treated the cooling process either classic@hs], or have H=f dx ﬁV‘I’T(X)V‘I’(X)+V(X)‘I’T(X)‘I’(X)
used various additional assumptions about the quantum
states involved. This leads to the question of how to handle +@,T(X)§(X)+@(X) @T(X)

the transition to the final quantum dominated condensate,

which is often assumed to be a canonical ensemble at a tem- 1( 4 Sl sl s -

perature estimated from the classical theory. The final en- + 5] dYUX=y)T x) P (y)¥(y)T(x)|. (1)
semble behavior is then usually calculated from the mean-

field Gross-Pitaevskii equatiofi§], although some attempts - .

have been made to go beyond tf#$, including treatment of Here R(x) represents a localized absorber that removes
the kinetics of condensatiof8,9] based on a master equa- the neutral atoms; for (_example, via collisions with foreign
tion. However, small atom traps are neither in the thermody&toms, or at the location of the “rf-scalpel” resonance,
namic limit, nor necessarily in a steady state. A first-Which is used to cause evaporative coolfig We expand

principles theory is really needed, to provide a benchmarkV using free-field modes with a momentum cutddf, ..
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Provided thakmax<aal. wherea, is the Swave scattering known sensi_ti_vity of the ex_periments to_the p_re_cise experi-
length, U(x—y) can be replaced by the renormalized mental pondmons. In practical computatlons, it is necessary
pseudopotentialis?(x—y), where u=4magh?m in three to c.:onS|der.rather small traps. This is becagsg the numerlcal
dimensions. In two dimensions, is defined similarly, but lattice spacing used to sample the stochastic fieldssipace
with a factoré, in the denominator, which corresponds to theMust be of ordelAX=1/kpayx, Wherekpay is the largest or-
effective spatial extent of the condensate in the third direcdinary momentum considered in the problem. However, the
tion. This factor is of the order of the lattice spacing in thevalue of the corresponding kinetic energyEg
simulation, and is chosen to be equal %tg, the scaling = (%kma?/2m, must be large enough to allow energetic at-
length. oms to escape over the potential barrier of the trap; other-
The resulting quantum time evolution for the density ma-Wwise, no cooling can take place. This sets an upper bound on

trix p can be solved by expanding into a coherent-state basid!® lattice spacing, and hence on the maximum trap size,
and then (provided phase-space boundary terms vanishWh'Ch depends on the number of lattice points that can be
transforming to an equivalent set of equations in the positivecompPuted. o & g

P representation. The phase-space equations in the BEC case | '€ available lattice sizes used here weré gdints, de-

can be expressed as two coupled complex partial stochas€ding on the dimensionalit; With this limit, and param-
differential equations of the form eter values similar to those used in the experiments, the

available trap sizes that can be treated are of the order of
Y, 5 . ih micron dimensions. These are smaller than those used cur-
i | om VUi V0 - S T(X) rently, although traps of this type are quite feasible. The
other possibility within the constraints is to use a trap that is
i of larger dimensions but lower in potential height. For this
+iRug () [, (@ type of trap, which was simulated here, the width was
=10 um, with a potential height ofV . /kg=1.9
where j=1,2 and where the stochastic fields are the X 10™’ K and an initial temperature of,=2.4x10"" K,
coherent-state amplitudes of a nondiagonal coherent-state For physical reasons, a further limitation is that the initial
projector,| 4 ){¥,|/{ | #1). These equations can be readily density must be such than(k))=<1; otherwise, the starting
simulated numerically12] in one, two, or three transverse point would already have a Bose-Einstein condensation. This
dimensions, with either attractive or repulsive potentials. Theplaces a limit on the number of atoms that can simulated, if
form of the potentials was chosen to be we assume an initially noncondensed grand-canonical en-
semble of(approximately noninteracting atoms. There were
B ) 5 initially around 500 atoms in the two-dimensional simula-
VixH=(1~ “t)vmaszl [sin(mx;/Lj) T, (3 tions reported here and 10000 in the three-dimensional case.
These corresponded to atomic densities p§=5.0
wherea is typically the inverse of the total simulation time. X 10"%/m? andny=1.0x 10"m®, respectively.
The potential height was swept downwards linearly in time, For the small trap parameters used in the simulations, the
thus successively removing cooler and cooler subpopulatiorgffect of the stochastic terms on the dynamics is very large.
of atoms. The absorption rai&(x) was chosen as In fact, the quantum fluctuations that these stochastic terms
introduce are much larger than the initial thermal fluctua-
tions, such that the initial features of the distribution do not
F(X):FmaXZl [sin(mx; /L;)]%°. (4 persist. This means that the choice of the initial state of the
= system is not critical, and also that in order to determine
Here L; is the trap width in thejth direction, such that Properties of the final quantum ground state of the system,
—L;/2<x;<L;/2. The sinusoidal shape of the potential andthe stochastic terms are vital. For comparison, we investi-
absorption was chosen so that the trap would be harmonigated the effect of removing the quantum noise terms, so that
near the center of the trap, and smoothly approach a maxie simulations were simply of the Gross-Pitaevskii equa-
mum near the edge. Thus hot atoms are absorbed when th|3:9”’ with initial conditions corresponding to a thermal state.
0

reach regions of largE(x), located near the trap edges. r our parameters, these_situations did not show strong
A useful feature of Eq(2) is that, in the deterministic Bose condensation effects, in contrast to the fully quantum-

limit, this corresponds precisely to the well-known Gross_mech_anical simulations. This demonstrates the highly. non-
Pitaevskii equations, with the addition of a coefficidH(t) cla_ssmal nature of the ear.ly stages of Bose condensation, in
for the absorption of atoms by the reservoirs. Quantum efwhich spontaneous transitions to the lowest-energy states

fects come from the term& , which are real Gaussian sto- clearly play an important role. ,
chastic fields, with correlations: For the simulations shown in the figureg,= 0.6 nm and

the mass, corresponding to rubidium,nis=1.5x 10 2° kg.
(€£2(8,X)€a(L,y)) =8 (s—1) 8% (x—y). (57  These parameters correspond to relatively weakly interacting
atoms, in order to reduce the sampling error—which in-
The quantum correlations that can be calculated includereased rapidly with longer times and larger coupling con-
n(k) =(1(k) ¢35 (k)), which gives the observed momentum stants. No large phase-space excursions were observed with
distribution. these parameters. All results are plotted in normalized units,
The results of the simulations depend critically on thewith space scaled byy=0.76 um and time scaled by,
exact parameters chosen, just as one would expect from the0.79 ms. The time step was typicalty/2500, with all
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FIG. 1. Simulation of a two-dimensional Bose condensate, . 100
time: t/t0

showing the ensemble avera@®5 path$ atom density(n(k))

along one dimension in Fourier space versus time. Time has been g 2 Simulation of a three-dimensional Bose condensate
X B - 1 -2 ;

normalized byto=0.79 ms and momentum b, =1.32<10°m™". showing the ensemble average evoluti@d paths of the confine-

. ) ) ) ment parametelQ. The time axis has been normalized by
calculations being repeated at half the time d@@pd noise =0.79 ms.

sampled from the same process with twice the resolution
[12]), to check numerical convergence. The boundary ab

sorption term was Set hpa,=10°/s. Both the initial and the escaping atoms have an arbitrary

_In mo.mef‘t“m space, the final at.om dgnsny for '.nd'v'dualangular momentum. We can estimate that the variance in
trajectories in both two and three dimensions is quite narrow

and tall, with a width corresponding to a temperature weli@ngular momentum will scale approximately a’)=N,
below the critical temperature for BEC. The peak final mo-from central limit theorem arguments. Thus, we can expect
mentum state population is much greater thajarid greater that each trapped condensate should have angular momen-
than the initial conditions This is more pronounced in the UM, unless constrained by the trap geometry. The angular
three-dimensional case than in two dimensions, showing thgR0mentum can be carried either by quasiparticles or vorti-
the evaporative cooling process is more efficient with the®S; although a volume-fillingth-order vortex has)=Nj

extra degree of freedom and the greater number of atoms th@fd therefore cannot form spontaneously in the thermody-
are present. namic limit of largeN. For small condensates,j& =1 vor-

As is usual in quantum mechanics, only the ensembld€x may be quite likely. Several authddst] ha\{e_considereq
averages of the simulations have an operational meanin§OW such vortex states may form through stirring or rotating
Thus, while individual stochastic realizations have a definité2 condensate, and the stability of vortices has been explored
coherent phase, these phases are different for distinct stbl5)- Here we consider the possibility of vortices forming
chastic realizations—the ensemble average has no absolitBontaneously in the condensate through the process of
phase information. The average evolution of a two-€vaporative cooling, without external intervention.
dimensional condensate is shown in Fig. 1; in this case, the The presence of vortex states can be detected quantita-
condensate is only weakly occupied. tively by transforming the spatial lattice into a lattice that

Since the condensate does not have to form in the groungSes the angular-momentum eigenstates as a basis set. The

state, the Bose-condensed peaks that occur at different mo-
mentum values in single runs are averaged out in the overall

strained to fall into the]=0 angular-momentum eigenstate.

ensemble. A more useful indication of condensation is given 12+
by the following measure of phase-space confinement: 10
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This higher-order correlation function is the quantum ana- /‘«:(/%/(é’?,fﬁ/ \1’\\\#}145,. 10
logue of the participation ratio defined by HElI3]. Figure 2 50 '“.'i'&!" : 0 -5 7
shows the evolution of) calculated from 15 runs of the time: tit. 100 10 > angular momenturn:
three-dimensional simulation. The sharp rise neat00 is a 0 '
strong indication of condensation occurring at this point. FIG. 3. Ensemble average of the angular-momentum distribu-

For the finite-size condensates in atom traps, just as thgon (n(j)), during the condensation of a two-dimensional Bose
final ground state is not expected to be precisely the zereondensat€40 pathg. The time axis has been normalized ty
momentum eigenstate, so too such condensates are not cone.79 ms.



RAPID COMMUNICATIONS

R2664 P. D. DRUMMOND AND J. F. CORNEY PRA 60

two-dimensional results, which are presented here, are oltrap simulation. Shown in Fig. 3 is the ensemble average of
tained by integrating the spatial profile over orthogonalthe angular-momentum distribution, which reveals quite a

modes with corresponding field operatcir,%n. The angular- broad range of final angular momentum. This is consistent

momentum distribution is then given by a summation ovemwith the existence of vortices.
the radial modes: In summary, we have demonstrated a three-dimensional

real-time quantum-dynamical simulation of Bose condensa-

@) tion with mesoscopic numbers of interacting atoms on a

large lattice. Sampling errors and lattice size restrictions im-

pose strong limitations on these initial simulations. The re-

The angular-momentum distribution for individual trajec- syits, as well as showing evidence for highly nonclassical
tories shows large occupation in particular angular modesyehayior in a first-principles simulation of BEC formation,
different for each run. This indicates that vortices with dif- ;qicate the possibility of spontaneous vortex formation in

ferent momenta appear each time. For example, in one run, g4 evaporatively cooled condensates.
vortex with j=—1 appears at about one-quarter of the way

through the simulation, and persists until the end. The maxi- This research was supported in part by the Australian Re-
mum occupation of the vortex is aroundj) =20, owing to  search Council, and by the National Science Foundation un-
relatively small initial atom numbers in this two-dimensional der Grant No. PHY94-07194.

n(j)=2 (U, % ).
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