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Quantum dynamics of evaporatively cooled Bose-Einstein condensates
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We report on dynamical simulations of Bose-Einstein condensation via evaporative cooling in an atomic
trap. The results show evidence for spontaneous vortex formation and quantum dynamics in small traps.
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Evaporative cooling has been successfully used to p
duce Bose-Einstein condensates~BEC’s! inside magneto-
optic traps with neutral atoms@1#. A number of questions
arise as to the quantum state that is achieved, since thi
volves both the dynamics of the cooling process and
applicability of the ergodic hypothesis. Atom-atom intera
tions have a strong influence on the cooling process and
final state in these experiments. Quantum fluctuations
important in determining atom laser coherence proper
@2#, especially since the experimental systems do not hav
large a particle number as traditional condensed matter
periments. However, there is no guarantee that a canon
ensemble will result from evaporative cooling, as the obs
vations are made in a transient, nonequilibrium phase. T
conventional canonical methods may not be applicable
these experiments.

In this paper, we report the use of phase-space meth
for direct quantum-dynamical calculations of the cooling a
formation of Bose-Einstein condensates on a thr
dimensional lattice. The results are restricted as yet to sm
condensates, due to the large numbers of modes invol
The computational results are very similar to those obser
experimentally. In particular, we find quantum evaporat
cooling, followed by a clear transition to a condensate. T
is strongly influenced by nonclassical features of the qu
tum dynamics. The calculations indicate additional structu
which we interpret as spontaneous formation of vortices
process of much wider interest in other fields of physics@3#.
These appear to originate in the residual orbital angular
mentum of the trapped atoms, which was neglected in pr
ous studies, and would provide a significant test of
present theory.

Earlier calculations of cooling dynamics have usua
treated the cooling process either classically@4,5#, or have
used various additional assumptions about the quan
states involved. This leads to the question of how to han
the transition to the final quantum dominated condens
which is often assumed to be a canonical ensemble at a
perature estimated from the classical theory. The final
semble behavior is then usually calculated from the me
field Gross-Pitaevskii equations@6#, although some attempt
have been made to go beyond this@7#, including treatment of
the kinetics of condensation@8,9# based on a master equ
tion. However, small atom traps are neither in the thermo
namic limit, nor necessarily in a steady state. A fir
principles theory is really needed, to provide a benchm
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for comparisons of these previous approximations, like
quantum Monte Carlo theories~QMTs! @10# in equilibrium
systems.

In our calculations, we include 33104 relevant modes
~which is a very conservative estimate!, with up to 1.0
3104 atoms present. The quantum-state vector therefore
over 1010 000components. One possible approach in princi
is to use quantum-number-state calculations in the time
main. Any direct calculation that includes all the releva
modes of the trapped atoms—up to the energy scales
quired for evaporating atoms to escape—is easily seen t
an enormous computational problem.

A more practical technique is to utilize phase-space me
ods that have already proved successful in laser the
These techniques can handle large numbers of particles
can also systematically treat departures from classical be
ior, including boson interactions. Generalized phase-sp
representations were used to correctly predict quadra
squeezed quantum soliton dynamics in optical fibers@11#,
which are described by quantum equations nearly identica
those used in atom-atom interaction studies. The coher
state~positive-P) phase-space equations are exactly equi
lent to the relevant quantum equations, provided phase-s
boundary terms@11# vanish. They have the advantage th
they are computationally tractable for the large Hilbe
spaces typical of BEC experiments. Techniques of this s
can provide a first step towards extending QMT metho
@10# into the time domain.

The model that we use includes the usual nonrelativi
Hamiltonian for neutral atoms in a trapV(x), interacting via

a potentialU(x), together with absorbing reservoirsR̂(x), in
d52 or d53 dimensions:

Ĥ5E ddxF \2

2m
¹Ĉ†~x!¹Ĉ~x!1V~x!Ĉ†~x!Ĉ~x!

1Ĉ†~x!R̂~x!1Ĉ~x!R̂†~x!

1
1

2E ddyU~x2y!Ĉ†~x!Ĉ†~y!Ĉ~y!Ĉ~x!G . ~1!

Here R̂(x) represents a localized absorber that remo
the neutral atoms; for example, via collisions with foreig
atoms, or at the location of the ‘‘rf-scalpel’’ resonanc
which is used to cause evaporative cooling@1#. We expand

Ĉ using free-field modes with a momentum cutoffkmax.
R2661 ©1999 The American Physical Society
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Provided thatkmax!a0
21, wherea0 is theS-wave scattering

length, U(x2y) can be replaced by the renormalize
pseudopotentialudd(x2y), where u54pa0\2/m in three
dimensions. In two dimensions,u is defined similarly, but
with a factorj0 in the denominator, which corresponds to t
effective spatial extent of the condensate in the third dir
tion. This factor is of the order of the lattice spacing in t
simulation, and is chosen to be equal tox0, the scaling
length.

The resulting quantum time evolution for the density m
trix r̂ can be solved by expanding into a coherent-state ba
and then ~provided phase-space boundary terms van!
transforming to an equivalent set of equations in the posit
P representation. The phase-space equations in the BEC
can be expressed as two coupled complex partial stoch
differential equations of the form

i\
]c j

]t
5F2\2

2m
¹21uc jc32 j* 1V~x!2

i\

2
G~x!

1Ai\uj j~ t,x!Gc j , ~2!

where j 51,2 and where the stochastic fieldsc j are the
coherent-state amplitudes of a nondiagonal coherent-s
projector,uc1&^c2u/^c2uc1&. These equations can be read
simulated numerically@12# in one, two, or three transvers
dimensions, with either attractive or repulsive potentials. T
form of the potentials was chosen to be

V~x,t !5~12at !Vmax(
j 51

d

@sin~pxj /L j !#
2, ~3!

wherea is typically the inverse of the total simulation time
The potential height was swept downwards linearly in tim
thus successively removing cooler and cooler subpopulat
of atoms. The absorption rateG(x) was chosen as

G~x!5Gmax(
j 51

d

@sin~pxj /L j !#
50. ~4!

Here L j is the trap width in thej th direction, such that
2L j /2<xj<L j /2. The sinusoidal shape of the potential a
absorption was chosen so that the trap would be harm
near the center of the trap, and smoothly approach a m
mum near the edge. Thus hot atoms are absorbed when
reach regions of largeG(x), located near the trap edges.

A useful feature of Eq.~2! is that, in the deterministic
limit, this corresponds precisely to the well-known Gros
Pitaevskii equations, with the addition of a coefficientG(x)
for the absorption of atoms by the reservoirs. Quantum
fects come from the termsj j , which are real Gaussian sto
chastic fields, with correlations:

^j1~s,x!j2~ t,y!&5d i j d~s2t !dd~x2y!. ~5!

The quantum correlations that can be calculated incl
n(k)5^c1(k)c2* (k)&, which gives the observed momentu
distribution.

The results of the simulations depend critically on t
exact parameters chosen, just as one would expect from
-

-
is,

-
ase
tic

te

e

,
ns

ic
xi-
ey

-

f-

e

he

known sensitivity of the experiments to the precise expe
mental conditions. In practical computations, it is necess
to consider rather small traps. This is because the nume
lattice spacing used to sample the stochastic fields inx space
must be of orderDx51/kmax, wherekmax is the largest or-
dinary momentum considered in the problem. However,
value of the corresponding kinetic energy,EK
5(\kmax)

2/2m, must be large enough to allow energetic a
oms to escape over the potential barrier of the trap; oth
wise, no cooling can take place. This sets an upper boun
the lattice spacing, and hence on the maximum trap s
which depends on the number of lattice points that can
computed.

The available lattice sizes used here were 32d points, de-
pending on the dimensionalityd. With this limit, and param-
eter values similar to those used in the experiments,
available trap sizes that can be treated are of the orde
micron dimensions. These are smaller than those used
rently, although traps of this type are quite feasible. T
other possibility within the constraints is to use a trap tha
of larger dimensions but lower in potential height. For th
type of trap, which was simulated here, the width wasL j
510 mm, with a potential height of Vmax/kB51.9
31027 K and an initial temperature ofT052.431027 K.

For physical reasons, a further limitation is that the init
density must be such that^n(k)&<1; otherwise, the starting
point would already have a Bose-Einstein condensation. T
places a limit on the number of atoms that can simulated
we assume an initially noncondensed grand-canonical
semble of~approximately! noninteracting atoms. There wer
initially around 500 atoms in the two-dimensional simul
tions reported here and 10 000 in the three-dimensional c
These corresponded to atomic densities ofn055.0
31012/m2 andn051.031019/m3, respectively.

For the small trap parameters used in the simulations,
effect of the stochastic terms on the dynamics is very lar
In fact, the quantum fluctuations that these stochastic te
introduce are much larger than the initial thermal fluctu
tions, such that the initial features of the distribution do n
persist. This means that the choice of the initial state of
system is not critical, and also that in order to determ
properties of the final quantum ground state of the syst
the stochastic terms are vital. For comparison, we inve
gated the effect of removing the quantum noise terms, so
the simulations were simply of the Gross-Pitaevskii eq
tion, with initial conditions corresponding to a thermal sta
For our parameters, these situations did not show str
Bose condensation effects, in contrast to the fully quantu
mechanical simulations. This demonstrates the highly n
classical nature of the early stages of Bose condensatio
which spontaneous transitions to the lowest-energy st
clearly play an important role.

For the simulations shown in the figures,a050.6 nm and
the mass, corresponding to rubidium, ism51.5310225 kg.
These parameters correspond to relatively weakly interac
atoms, in order to reduce the sampling error—which
creased rapidly with longer times and larger coupling co
stants. No large phase-space excursions were observed
these parameters. All results are plotted in normalized un
with space scaled byx050.76 mm and time scaled byt0
50.79 ms. The time step was typicallyt0/2500, with all
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calculations being repeated at half the time step~and noise
sampled from the same process with twice the resolu
@12#!, to check numerical convergence. The boundary
sorption term was set toGmax.103/s.

In momentum space, the final atom density for individu
trajectories in both two and three dimensions is quite nar
and tall, with a width corresponding to a temperature w
below the critical temperature for BEC. The peak final m
mentum state population is much greater than 1~and greater
than the initial conditions!. This is more pronounced in th
three-dimensional case than in two dimensions, showing
the evaporative cooling process is more efficient with
extra degree of freedom and the greater number of atoms
are present.

As is usual in quantum mechanics, only the ensem
averages of the simulations have an operational mean
Thus, while individual stochastic realizations have a defin
coherent phase, these phases are different for distinct
chastic realizations—the ensemble average has no abs
phase information. The average evolution of a tw
dimensional condensate is shown in Fig. 1; in this case,
condensate is only weakly occupied.

Since the condensate does not have to form in the gro
state, the Bose-condensed peaks that occur at different
mentum values in single runs are averaged out in the ove
ensemble. A more useful indication of condensation is giv
by the following measure of phase-space confinement:

Q5

E d3k^c1~k!c1~k!c2* ~k!c2* ~k!&

S E d3k^c1~k!c2* ~k!& D 2

x0
3

. ~6!

This higher-order correlation function is the quantum a
logue of the participation ratio defined by Hall@13#. Figure 2
shows the evolution ofQ calculated from 15 runs of the
three-dimensional simulation. The sharp rise neart5100 is a
strong indication of condensation occurring at this point.

For the finite-size condensates in atom traps, just as
final ground state is not expected to be precisely the z
momentum eigenstate, so too such condensates are not

FIG. 1. Simulation of a two-dimensional Bose condensa
showing the ensemble average~55 paths! atom density^n(k)&
along one dimension in Fourier space versus time. Time has b
normalized byt050.79 ms and momentum byk051.323106m21.
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strained to fall into theJ50 angular-momentum eigenstat
Both the initial and the escaping atoms have an arbitr
angular momentum. We can estimate that the variance

angular momentum will scale approximately as^Ĵ2&}N,
from central limit theorem arguments. Thus, we can exp
that each trapped condensate should have angular mo
tum, unless constrained by the trap geometry. The ang
momentum can be carried either by quasiparticles or vo
ces, although a volume-fillingj th-order vortex hasJ5N j
and therefore cannot form spontaneously in the thermo
namic limit of largeN. For small condensates, aj 561 vor-
tex may be quite likely. Several authors@14# have considered
how such vortex states may form through stirring or rotat
a condensate, and the stability of vortices has been expl
@15#. Here we consider the possibility of vortices formin
spontaneously in the condensate through the proces
evaporative cooling, without external intervention.

The presence of vortex states can be detected quan
tively by transforming the spatial lattice into a lattice th
uses the angular-momentum eigenstates as a basis set

,

en FIG. 2. Simulation of a three-dimensional Bose condens
showing the ensemble average evolution~15 paths! of the confine-
ment parameterQ. The time axis has been normalized byt0

50.79 ms.

FIG. 3. Ensemble average of the angular-momentum distr
tion ^n( j )&, during the condensation of a two-dimensional Bo
condensate~40 paths!. The time axis has been normalized byt0

50.79 ms.
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two-dimensional results, which are presented here, are
tained by integrating the spatial profile over orthogon

modes with corresponding field operatorsĈ jn . The angular-
momentum distribution is then given by a summation o
the radial modes:

n~ j !5(
n

^Ĉ jnĈ jn* &. ~7!

The angular-momentum distribution for individual traje
tories shows large occupation in particular angular mod
different for each run. This indicates that vortices with d
ferent momenta appear each time. For example, in one ru
vortex with j 521 appears at about one-quarter of the w
through the simulation, and persists until the end. The m
mum occupation of the vortex is aroundn( j )520, owing to
relatively small initial atom numbers in this two-dimension
or
.
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trap simulation. Shown in Fig. 3 is the ensemble average
the angular-momentum distribution, which reveals quite
broad range of final angular momentum. This is consist
with the existence of vortices.

In summary, we have demonstrated a three-dimensio
real-time quantum-dynamical simulation of Bose conden
tion with mesoscopic numbers of interacting atoms on
large lattice. Sampling errors and lattice size restrictions
pose strong limitations on these initial simulations. The
sults, as well as showing evidence for highly nonclassi
behavior in a first-principles simulation of BEC formatio
indicate the possibility of spontaneous vortex formation
small evaporatively cooled condensates.
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