34 research outputs found

    Probiotics in Pediatrics

    Get PDF
    653-661The gut microbiota is critically important for development and maturation of the mucosal immune system right from birth till the whole life. The development of the immune system in neonates is especially important because it is not fully matured. However, its growth begins before birth. It depends on various factors like mode of delivery, mother’s microbiota, antibiotic consumption, mother’s milk, eating habits of infants and other environmental factors. Alterations in gut microbiota (dysbiosis) may disturb the gut homeostasis, and hamper the development of immune system. However, dysbiosis in infants may be averted by administration of probiotics. Mother’s milk contains various nutritive components along with some beneficial bacteria, probiotics (lactobacilli and bifidobacteria) which help in the development of gut microbiome of the infant. Probiotics, in particular, serve an important role in sustaining eubiosis in an infant's body. Any dysbiotic condition, particularly in infants, may be associated with a number of diseases/disorders like diarrhea, gastrointestinal problems, and allergic issues. Atopic dermatitis (AD) is one such common allergic problem prevalent in paediatrics. The probiotics serve as modulators of immune response and acts as immunobiotics. AD-related inflammation can be successfully managed by the intervention of probiotics. This review presents the potential of probiotics for proper development of infants’ immune system, and for prevention and treatment of various diseases, especially the ever-rising cases of AD

    Probiotics in Pediatrics

    Get PDF
    The gut microbiota is critically important for development and maturation of the mucosal immune system right from birth till the whole life. The development of the immune system in neonates is especially important because it is not fully matured. However, its growth begins before birth. It depends on various factors like mode of delivery, mother’s microbiota, antibiotic consumption, mother’s milk, eating habits of infants and other environmental factors. Alterations in gut microbiota (dysbiosis) may disturb the gut homeostasis, and hamper the development of immune system. However, dysbiosis in infants may be averted by administration of probiotics. Mother’s milk contains various nutritive components along with some beneficial bacteria, probiotics (lactobacilli and bifidobacteria) which help in the development of gut microbiome of the infant. Probiotics, in particular, serve an important role in sustaining eubiosis in an infant's body. Any dysbiotic condition, particularly in infants, may be associated with a number of diseases/disorders like diarrhea, gastrointestinal problems, and allergic issues. Atopic dermatitis (AD) is one such common allergic problem prevalent in paediatrics. The probiotics serve as modulators of immune response and acts as immunobiotics. AD-related inflammation can be successfully managed by the intervention of probiotics. This review presents the potential of probiotics for proper development of infants’ immune system, and for prevention and treatment of various diseases, especially the ever-rising cases of AD

    8-chloro-adenosine activity in FLT3-ITD acute myeloid leukemia

    Get PDF
    Nucleoside analogs represent the backbone of several distinct chemotherapy regimens for acute myeloid leukemia (AML) and combination with tyrosine kinase inhibitors has improved survival of AML patients, including those harboring the poor-risk FLT3-ITD mutation. Although these compounds are effective in killing proliferating blasts, they lack activity against quiescent leukemia stem cells (LSCs), which contributes to initial treatment refractoriness or subsequent disease relapse. The reagent 8-chloro-adenosine (8-Cl-Ado) is a ribose-containing, RNA-directed nucleoside analog that is incorporated into newly transcribed RNA rather than in DNA, causing inhibition of RNA transcription. In this report, we demonstrate antileukemic activities of 8-Cl-Ado in vitro and in vivo and provide mechanistic insight into the mode of action of 8-Cl-Ado in AML. 8-Cl-Ado markedly induced apoptosis in LSC, with negligible effects on normal stem cells. 8-Cl-Ado was particularly effective against AML cell lines and primary AML blast cells harboring the FLT3-ITD mutation. FLT3-ITD is associated with high expression of miR-155. Furthermore, we demonstrate that 8-Cl-Ado inhibits miR-155 expression levels accompanied by induction of DNA-damage and suppression of cell proliferation, through regulation of miR-155/ErbB3 binding protein 1(Ebp1)/p53/PCNA signaling. Finally, we determined that combined treatment of NSG mice engrafted with FLT3-ITD (+) MV4-11 AML cells with 8-Cl-Ado and the FLT3 inhibitor AC220 (quizartinib) synergistically enhanced survival, compared with that of mice treated with the individual drugs, suggesting a potentially effective approach for FLT3-ITD AML patients.Peer reviewe

    Bone marrow niche trafficking of miR-126 controls the self-renewal of leukemia stem cells in chronic myelogenous leukemia

    Get PDF
    Leukemia stem cells (LSCs) in individuals with chronic myelogenous leukemia (CML) (hereafter referred to as CML LSCs) are responsible for initiating and maintaining clonal hematopoiesis. These cells persist in the bone marrow (BM) despite effective inhibition of BCR–ABL kinase activity by tyrosine kinase inhibitors (TKIs). Here we show that although the microRNA (miRNA) miR-126 supported the quiescence, self-renewal and engraftment capacity of CML LSCs, miR-126 levels were lower in CML LSCs than in long-term hematopoietic stem cells (LT-HSCs) from healthy individuals. Downregulation of miR-126 levels in CML LSCs was due to phosphorylation of Sprouty-related EVH1-domain-containing 1 (SPRED1) by BCR–ABL, which led to inhibition of the RAN–exportin-5–RCC1 complex that mediates miRNA maturation. Endothelial cells (ECs) in the BM supply miR-126 to CML LSCs to support quiescence and leukemia growth, as shown using mouse models of CML in which Mir126a (encoding miR-126) was conditionally knocked out in ECs and/or LSCs. Inhibition of BCR–ABL by TKI treatment caused an undesired increase in endogenous miR-126 levels, which enhanced LSC quiescence and persistence. Mir126a knockout in LSCs and/or ECs, or treatment with a miR-126 inhibitor that targets miR-126 expression in both LSCs and ECs, enhanced the in vivo anti-leukemic effects of TKI treatment and strongly diminished LSC leukemia-initiating capacity, providing a new strategy for the elimination of LSCs in individuals with CML

    Incidence of Killer Yeast in Cane Molasses and Status of Industrial Yeasts with Respect to Killer Character

    No full text
    714-717In all, 210 yeast strains isolated from molasses were screened for killer, sensitive of neutrol  character against reference killer (Saccharomyces cerevisiae MTCC427) and sensitive strains (Saccharomyces cerevisiae MTCC 473). Thirteen strain, were found to be of killer phenotype and 32 were sensitive, and rest of the isolates belonged to genera Saccharomyces, Schizosaccharomyces, Kluyveromyces, Hansenula, Pichia, Kloeckere, and Torulopsis were of neutral character. All the killer strains belonged to genera Sacchromyces. Twenty-one industrial yeast strains including distillery and between yeasts tested were found to be of sensitive character

    High-performance green composites made by cellulose long filament-reinforced vanillin epoxy resin

    No full text
    Developing high-performance composite materials from biobased resources is paving the path toward sustainability. This paper reports cellulose long filaments (CLFs)-reinforced Vanillin Epoxy (VE) green composite developed through vacuum-assisted resin transfer and compression molding techniques. The proposed green composite combines the strong and tough cellulose long filaments with the thermally stable and hydrophobic biobased VE resin. The reinforcement with CLFs improved the flexural strength and flexural modulus of neat biobased VE resin remarkably by 135.1% and 542.8%. The green composite possessed a Tg of 144 °C and a water contact angle (WCA) of 96.4o, demonstrating good thermal stability and hydrophobic properties. SEM and FTIR results showed a strong interaction between CLFs and biobased VE epoxy resin. The above characteristics make the proposed green composite a robust material for environmentally friendly and high-performance structural applications
    corecore